Difference between revisions of "1996 AHSME Problems/Problem 9"

 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
Triangle <math>PAB</math> and square <math>ABCD</math> are in perpendicular planes. Given that <math>PA = 3, PB = 4</math> and <math>AB = 5</math>, what is <math>PD</math>?  
+
Triangle <math>PAB</math> and square <math>ABCD</math> are in [[perpendicular]] planes. Given that <math>PA = 3, PB = 4</math> and <math>AB = 5</math>, what is <math>PD</math>?  
 +
<asy>
 +
real r=sqrt(2)/2;
 +
draw(origin--(8,0)--(8,-1)--(0,-1)--cycle);
 +
draw(origin--(8,0)--(8+r, r)--(r,r)--cycle);
 +
filldraw(origin--(-6*r, -6*r)--(8-6*r, -6*r)--(8, 0)--cycle, white, black);
 +
filldraw(origin--(8,0)--(8,6)--(0,6)--cycle, white, black);
 +
pair A=(6,0), B=(2,0), C=(2,4), D=(6,4), P=B+1*dir(-65);
 +
draw(A--P--B--C--D--cycle);
 +
dot(A^^B^^C^^D^^P);
 +
label("$A$", A, dir((4,2)--A));
 +
label("$B$", B, dir((4,2)--B));
 +
label("$C$", C, dir((4,2)--C));
 +
label("$D$", D, dir((4,2)--D));
 +
label("$P$", P, dir((4,2)--P));
 +
</asy>
 +
<math> \text{(A)}\ 5\qquad\text{(B)}\ \sqrt{34} \qquad\text{(C)}\ \sqrt{41}\qquad\text{(D)}\ 2\sqrt{13}\qquad\text{(E)}\ 8 </math>
  
<math> \text{(A)}\ 5\qquad\text{(B)}\ \sqrt{34} \qquad\text{(C)}\ \sqrt{41}\qquad\text{(D)}\ 2\sqrt{13}\qquad\text{(E)}\ 8 </math>
 
  
 
==Solution==
 
==Solution==
 +
=== Solution 1 ===
 +
Since the two planes are perpendicular, it follows that <math>\triangle PAD</math> is a [[right triangle]]. Thus, <math>PD = \sqrt{PA^2 + AD^2} = \sqrt{PA^2 + AB^2} = \sqrt{34}</math>, which is option <math>\boxed{\text{B}}</math>.
  
 +
=== Solution 2 ===
 
Place the points on a coordinate grid, and let the <math>xy</math> plane (where <math>z=0</math>) contain triangle <math>PAB</math>.  Square <math>ABCD</math> will have sides that are vertical.
 
Place the points on a coordinate grid, and let the <math>xy</math> plane (where <math>z=0</math>) contain triangle <math>PAB</math>.  Square <math>ABCD</math> will have sides that are vertical.
  
Line 15: Line 33:
 
Since <math>AB</math> is one side of <math>\square ABCD</math> with length <math>5</math>, <math>BC = 5</math> as well.  Since <math>BC \perp AB</math>, and <math>BC</math> is also perpendicular to the <math>xy</math> plane, <math>BC</math> must run stright up and down.  WLOG pick the up direction, and since <math>BC = 5</math>, we travel <math>5</math> units up to <math>C(0,4,5)</math>.  Similarly, we travel <math>5</math> units up from <math>A(3,0,0)</math> to reach <math>D(3,0,5)</math>.
 
Since <math>AB</math> is one side of <math>\square ABCD</math> with length <math>5</math>, <math>BC = 5</math> as well.  Since <math>BC \perp AB</math>, and <math>BC</math> is also perpendicular to the <math>xy</math> plane, <math>BC</math> must run stright up and down.  WLOG pick the up direction, and since <math>BC = 5</math>, we travel <math>5</math> units up to <math>C(0,4,5)</math>.  Similarly, we travel <math>5</math> units up from <math>A(3,0,0)</math> to reach <math>D(3,0,5)</math>.
  
We now have coordinates for <math>P</math> and <math>D</math>.  The distance is <math>\sqrt{(5-0)^2 + (0-0)^2 + (3-0)^2} = \sqrt{34}</math>, which is option <math>\boxed{D}</math>
+
We now have coordinates for <math>P</math> and <math>D</math>.  The distance is <math>\sqrt{(5-0)^2 + (0-0)^2 + (3-0)^2} = \sqrt{34}</math>, which is option <math>\boxed{\text{B}}</math>.
  
 
==See also==
 
==See also==
 
{{AHSME box|year=1996|num-b=8|num-a=10}}
 
{{AHSME box|year=1996|num-b=8|num-a=10}}
 +
 +
[[Category:Introductory Geometry Problems]]
 +
[[Category:3D Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 13:07, 5 July 2013

Problem

Triangle $PAB$ and square $ABCD$ are in perpendicular planes. Given that $PA = 3, PB = 4$ and $AB = 5$, what is $PD$? [asy] real r=sqrt(2)/2; draw(origin--(8,0)--(8,-1)--(0,-1)--cycle); draw(origin--(8,0)--(8+r, r)--(r,r)--cycle); filldraw(origin--(-6*r, -6*r)--(8-6*r, -6*r)--(8, 0)--cycle, white, black); filldraw(origin--(8,0)--(8,6)--(0,6)--cycle, white, black); pair A=(6,0), B=(2,0), C=(2,4), D=(6,4), P=B+1*dir(-65); draw(A--P--B--C--D--cycle); dot(A^^B^^C^^D^^P); label("$A$", A, dir((4,2)--A)); label("$B$", B, dir((4,2)--B)); label("$C$", C, dir((4,2)--C)); label("$D$", D, dir((4,2)--D)); label("$P$", P, dir((4,2)--P)); [/asy] $\text{(A)}\ 5\qquad\text{(B)}\ \sqrt{34} \qquad\text{(C)}\ \sqrt{41}\qquad\text{(D)}\ 2\sqrt{13}\qquad\text{(E)}\ 8$


Solution

Solution 1

Since the two planes are perpendicular, it follows that $\triangle PAD$ is a right triangle. Thus, $PD = \sqrt{PA^2 + AD^2} = \sqrt{PA^2 + AB^2} = \sqrt{34}$, which is option $\boxed{\text{B}}$.

Solution 2

Place the points on a coordinate grid, and let the $xy$ plane (where $z=0$) contain triangle $PAB$. Square $ABCD$ will have sides that are vertical.

Place point $P$ at $(0,0,0)$, and place $PA$ on the x-axis so that $A(3,0,0)$, and thus $PA = 3$.

Place $PB$ on the y-axis so that $B(0,4,0)$, and thus $PB = 4$. This makes $AB = 5$, as it is the hypotenuse of a 3-4-5 right triangle (with the right angle being formed by the x and y axes). This is a clean use of the fact that $\triangle PAB$ is a right triangle.

Since $AB$ is one side of $\square ABCD$ with length $5$, $BC = 5$ as well. Since $BC \perp AB$, and $BC$ is also perpendicular to the $xy$ plane, $BC$ must run stright up and down. WLOG pick the up direction, and since $BC = 5$, we travel $5$ units up to $C(0,4,5)$. Similarly, we travel $5$ units up from $A(3,0,0)$ to reach $D(3,0,5)$.

We now have coordinates for $P$ and $D$. The distance is $\sqrt{(5-0)^2 + (0-0)^2 + (3-0)^2} = \sqrt{34}$, which is option $\boxed{\text{B}}$.

See also

1996 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png