Difference between revisions of "1950 AHSME Problems/Problem 19"
(Created page with "If <math> m </math> men can do a job in <math> d </math> days, then <math> m+r </math> men can do the job in: <math> \textbf{(A)}\ d+r \text{ days}\qquad\textbf{(B)}\ d-r\text{ d...") |
m (small latex fix) |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
+ | == Problem == | ||
If <math> m </math> men can do a job in <math> d </math> days, then <math> m+r </math> men can do the job in: | If <math> m </math> men can do a job in <math> d </math> days, then <math> m+r </math> men can do the job in: | ||
+ | |||
<math> \textbf{(A)}\ d+r \text{ days}\qquad\textbf{(B)}\ d-r\text{ days}\qquad\textbf{(C)}\ \frac{md}{m+r}\text{ days}\qquad\\ \textbf{(D)}\ \frac{d}{m+r}\text{ days}\qquad\textbf{(E)}\ \text{None of these} </math> | <math> \textbf{(A)}\ d+r \text{ days}\qquad\textbf{(B)}\ d-r\text{ days}\qquad\textbf{(C)}\ \frac{md}{m+r}\text{ days}\qquad\\ \textbf{(D)}\ \frac{d}{m+r}\text{ days}\qquad\textbf{(E)}\ \text{None of these} </math> | ||
+ | |||
+ | == Solution == | ||
+ | The number of men is inversely proportional to the number of days the job takes. Thus, if <math> m </math> men can do a job in <math> d </math> days, we have that it will take <math> md </math> days for <math> 1 </math> man to do the job. Thus, <math> m + r </math> men can do the job in <math>\boxed{\textbf{(C)}\ \frac{md}{m+r}\text{ days}}</math>. | ||
+ | |||
+ | == See Also == | ||
+ | {{AHSME 50p box|year=1950|num-b=18|num-a=20}} | ||
+ | |||
+ | [[Category:Introductory Algebra Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 23:53, 11 October 2020
Problem
If men can do a job in days, then men can do the job in:
Solution
The number of men is inversely proportional to the number of days the job takes. Thus, if men can do a job in days, we have that it will take days for man to do the job. Thus, men can do the job in .
See Also
1950 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.