Difference between revisions of "2003 AMC 12A Problems/Problem 18"
m (→See Also) |
m |
||
(16 intermediate revisions by 10 users not shown) | |||
Line 4: | Line 4: | ||
<math> \mathrm{(A) \ } 8180\qquad \mathrm{(B) \ } 8181\qquad \mathrm{(C) \ } 8182\qquad \mathrm{(D) \ } 9000\qquad \mathrm{(E) \ } 9090 </math> | <math> \mathrm{(A) \ } 8180\qquad \mathrm{(B) \ } 8181\qquad \mathrm{(C) \ } 8182\qquad \mathrm{(D) \ } 9000\qquad \mathrm{(E) \ } 9090 </math> | ||
− | == Solution == | + | == Solution 1 == |
− | |||
− | |||
When a <math>5</math>-digit number is divided by <math>100</math>, the first <math>3</math> digits become the quotient, <math>q</math>, and the last <math>2</math> digits become the remainder, <math>r</math>. | When a <math>5</math>-digit number is divided by <math>100</math>, the first <math>3</math> digits become the quotient, <math>q</math>, and the last <math>2</math> digits become the remainder, <math>r</math>. | ||
Therefore, <math>q</math> can be any integer from <math>100</math> to <math>999</math> inclusive, and <math>r</math> can be any integer from <math>0</math> to <math>99</math> inclusive. | Therefore, <math>q</math> can be any integer from <math>100</math> to <math>999</math> inclusive, and <math>r</math> can be any integer from <math>0</math> to <math>99</math> inclusive. | ||
− | For each of the <math>9\cdot10\cdot10=900</math> possible values of <math>q</math>, there are at least <math>\lfloor \frac{100}{11} \rfloor = 9</math> possible values of <math>r</math> such that <math>q+r \equiv 0\pmod{11}</math>. | + | For each of the <math>9\cdot10\cdot10=900</math> possible values of <math>q</math>, there are at least <math>\left\lfloor \frac{100}{11} \right\rfloor = 9</math> possible values of <math>r</math> such that <math>q+r \equiv 0\pmod{11}</math>. |
− | Since there is <math>1</math> "extra" possible value of <math>r</math> that is congruent to <math>0\pmod{11}</math>, each of the <math>\lfloor \frac{900}{11} \rfloor = 81</math> values of <math>q</math> that are congruent to <math>0\pmod{11}</math> have <math>1</math> more possible value of <math>r</math> such that <math>q+r \equiv 0\pmod{11}</math>. | + | Since there is <math>1</math> "extra" possible value of <math>r</math> that is congruent to <math>0\pmod{11}</math>, each of the <math>\left\lfloor \frac{900}{11} \right\rfloor = 81</math> values of <math>q</math> that are congruent to <math>0\pmod{11}</math> have <math>1</math> more possible value of <math>r</math> such that <math>q+r \equiv 0\pmod{11}</math>. |
− | Therefore, the number of possible values of <math>n</math> such that <math>q+r \equiv 0\pmod{11}</math> is <math>900\cdot9+81\cdot1=8181 \Rightarrow B</math>. | + | Therefore, the number of possible values of <math>n</math> such that <math>q+r \equiv 0\pmod{11}</math> is <math>900\cdot9+81\cdot1=8181 \Rightarrow\boxed{(B)} </math>. |
− | Solution 2 | + | == Solution 2 == |
− | + | Notice that <math>q+r\equiv0\pmod{11}\Rightarrow100q+r\equiv0\pmod{11}</math>. This means that any number whose quotient and remainder sum is divisible by 11 must also be divisible by 11. Therefore, there are <math>\frac{99990-10010}{11}+1=8181</math> possible values. The answer is <math>\boxed{\textbf{(B) }8181}</math>. | |
− | == | + | == Solution 3 == |
− | + | Let <math>abcde</math> be the five digits of <math>n</math>. Then <math>q = abc</math> and <math>r = de</math>. By the divisibility rules of <math>11</math>, <math>q = a - b + c \pmod{11}</math> and <math>r = -d + e \pmod{11}</math>, so <math>q + r = a - b + c - d + e = abcde = n \pmod{11}</math>. Thus, <math>n</math> must be divisble by <math>11</math>. There are <math>\frac{99990 - 10010}{11} + 1 = 8181</math> five-digit multiples of <math>11</math>, so the answer is <math>\boxed{\textbf{(B) }8181}</math>. | |
− | + | ==Video Solution 1== | |
− | + | https://youtu.be/OpGHj-B0_hg?t=672 | |
− | + | ~IceMatrix | |
+ | |||
+ | ==See Also== | ||
+ | {{AMC10 box|year=2003|ab=A|num-b=24|after=Last Question}} | ||
+ | {{AMC12 box|year=2003|ab=A|num-b=17|num-a=19}} | ||
+ | {{MAA Notice}} |
Latest revision as of 17:20, 18 July 2022
Problem
Let be a -digit number, and let and be the quotient and the remainder, respectively, when is divided by . For how many values of is divisible by ?
Solution 1
When a -digit number is divided by , the first digits become the quotient, , and the last digits become the remainder, .
Therefore, can be any integer from to inclusive, and can be any integer from to inclusive.
For each of the possible values of , there are at least possible values of such that .
Since there is "extra" possible value of that is congruent to , each of the values of that are congruent to have more possible value of such that .
Therefore, the number of possible values of such that is .
Solution 2
Notice that . This means that any number whose quotient and remainder sum is divisible by 11 must also be divisible by 11. Therefore, there are possible values. The answer is .
Solution 3
Let be the five digits of . Then and . By the divisibility rules of , and , so . Thus, must be divisble by . There are five-digit multiples of , so the answer is .
Video Solution 1
https://youtu.be/OpGHj-B0_hg?t=672
~IceMatrix
See Also
2003 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2003 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.