Difference between revisions of "2012 AMC 10A Problems/Problem 6"

(Solution)
 
(2 intermediate revisions by 2 users not shown)
Line 11: Line 11:
 
<math>xy=9</math>
 
<math>xy=9</math>
  
<math>\frac{1}{x}=4(\frac{1}{y})</math>
+
<math>\frac{1}{x}=4 \left( \frac{1}{y} \right)</math>
  
 
Therefore, <math>4x=y</math>
 
Therefore, <math>4x=y</math>
Line 22: Line 22:
  
 
The sum would be <math>\frac{3}{2}+6</math> = <math>\boxed{\textbf{(D)}\ \frac{15}{2}}</math>
 
The sum would be <math>\frac{3}{2}+6</math> = <math>\boxed{\textbf{(D)}\ \frac{15}{2}}</math>
 +
 +
==Video Solution (CREATIVE THINKING)==
 +
https://youtu.be/jyA5_tjDOjc
 +
 +
~Education, the Study of Everything
  
 
== See Also ==
 
== See Also ==
  
 
{{AMC10 box|year=2012|ab=A|num-b=5|num-a=7}}
 
{{AMC10 box|year=2012|ab=A|num-b=5|num-a=7}}
 +
{{MAA Notice}}

Latest revision as of 12:55, 1 July 2023

Problem

The product of two positive numbers is 9. The reciprocal of one of these numbers is 4 times the reciprocal of the other number. What is the sum of the two numbers?

$\textbf{(A)}\ \frac{10}{3}\qquad\textbf{(B)}\ \frac{20}{3}\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}\ \frac{15}{2}\qquad\textbf{(E)}\ 8$

Solution

Let the two numbers equal $x$ and $y$. From the information given in the problem, two equations can be written:

$xy=9$

$\frac{1}{x}=4 \left( \frac{1}{y} \right)$

Therefore, $4x=y$

Replacing $y$ with $4x$ in the equation,

$4x^2=9$

So $x=\frac{3}{2}$ and $y$ would then be $4 \times$ $\frac{3}{2}=6$

The sum would be $\frac{3}{2}+6$ = $\boxed{\textbf{(D)}\ \frac{15}{2}}$

Video Solution (CREATIVE THINKING)

https://youtu.be/jyA5_tjDOjc

~Education, the Study of Everything

See Also

2012 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png