Difference between revisions of "2010 AIME I Problems/Problem 12"
Martin13579 (talk | contribs) m (→Video Solution: video does not work anymore) |
|||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Let <math> | + | Let <math>m \ge 3</math> be an [[integer]] and let <math>S = \{3,4,5,\ldots,m\}</math>. Find the smallest value of <math>m</math> such that for every [[partition]] of <math>S</math> into two subsets, at least one of the subsets contains integers <math>a</math>, <math>b</math>, and <math>c</math> (not necessarily distinct) such that <math>ab = c</math>. |
'''Note''': a partition of <math>S</math> is a pair of sets <math>A</math>, <math>B</math> such that <math>A \cap B = \emptyset</math>, <math>A \cup B = S</math>. | '''Note''': a partition of <math>S</math> is a pair of sets <math>A</math>, <math>B</math> such that <math>A \cap B = \emptyset</math>, <math>A \cup B = S</math>. | ||
Line 7: | Line 7: | ||
We claim that <math>243</math> is the minimal value of <math>m</math>. Let the two partitioned sets be <math>A</math> and <math>B</math>; we will try to partition <math>3, 9, 27, 81,</math> and <math>243</math> such that the <math>ab=c</math> condition is not satisfied. [[Without loss of generality]], we place <math>3</math> in <math>A</math>. Then <math>9</math> must be placed in <math>B</math>, so <math>81</math> must be placed in <math>A</math>, and <math>27</math> must be placed in <math>B</math>. Then <math>243</math> cannot be placed in any set, so we know <math>m</math> is less than or equal to <math>243</math>. | We claim that <math>243</math> is the minimal value of <math>m</math>. Let the two partitioned sets be <math>A</math> and <math>B</math>; we will try to partition <math>3, 9, 27, 81,</math> and <math>243</math> such that the <math>ab=c</math> condition is not satisfied. [[Without loss of generality]], we place <math>3</math> in <math>A</math>. Then <math>9</math> must be placed in <math>B</math>, so <math>81</math> must be placed in <math>A</math>, and <math>27</math> must be placed in <math>B</math>. Then <math>243</math> cannot be placed in any set, so we know <math>m</math> is less than or equal to <math>243</math>. | ||
− | For <math>m \le 242</math>, we can partition <math>S</math> into <math>S \cap \{3, 4, 5, 6, 7, 8, 81, 82, 83, 84 ... 242\}</math> and <math>S \cap \{9, 10, 11 ... 80\}</math>, and in neither set are there values where <math>ab=c</math> (since <math>8 < (3\text{ to }8)^2 < 81</math> and <math>(9\text{ to }80)^2 > 80 </math>). Thus <math>m = \boxed{243}</math>. | + | For <math>m \le 242</math>, we can partition <math>S</math> into <math>S \cap \{3, 4, 5, 6, 7, 8, 81, 82, 83, 84 ... 242\}</math> and <math>S \cap \{9, 10, 11 ... 80\}</math>, and in neither set are there values where <math>ab=c</math> (since <math>8 < (3\text{ to }8)^2 < 81</math> and <math>81^2>242</math> and <math>(9\text{ to }80)^2 > 80 </math>). Thus <math>m = \boxed{243}</math>. |
== See Also == | == See Also == |
Latest revision as of 00:06, 19 October 2024
Problem
Let be an integer and let . Find the smallest value of such that for every partition of into two subsets, at least one of the subsets contains integers , , and (not necessarily distinct) such that .
Note: a partition of is a pair of sets , such that , .
Solution
We claim that is the minimal value of . Let the two partitioned sets be and ; we will try to partition and such that the condition is not satisfied. Without loss of generality, we place in . Then must be placed in , so must be placed in , and must be placed in . Then cannot be placed in any set, so we know is less than or equal to .
For , we can partition into and , and in neither set are there values where (since and and ). Thus .
See Also
2010 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.