Difference between revisions of "2005 AMC 12B Problems/Problem 18"

 
(Solution)
 
(27 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Let <math>A(2,2)</math> and <math>B(7,7)</math> be points in the plane. Define <math>R</math> as the region in the first quadrant consisting of those points <math>C</math> such that <math>\triangle ABC</math> is an acute triangle. What is the closest integer to the area of the region <math>R</math>?
 +
 +
<math>
 +
\mathrm{(A)}\ 25    \qquad
 +
\mathrm{(B)}\ 39    \qquad
 +
\mathrm{(C)}\ 51    \qquad
 +
\mathrm{(D)}\ 60      \qquad
 +
\mathrm{(E)}\ 80
 +
</math>
  
 
== Solution ==
 
== Solution ==
 +
 +
<asy>
 +
Label f;
 +
f.p=fontsize(6);
 +
xaxis(-1,15,Ticks(f, 2.0));
 +
yaxis(-1,15,Ticks(f, 2.0));
 +
 +
pair A = MP("A",(2,2),SW), B = MP("B",(7,7),NE);
 +
D(A--B);
 +
filldraw((0,4)--(4,0)--(14,0)--(0,14)--cycle,gray);
 +
filldraw(CP(0.5(A+B),A),white);
 +
D(A);
 +
D(B);
 +
</asy>
 +
 +
For angle <math>A</math> and <math>B</math> to be acute, <math>C</math> must be between the two lines that are perpendicular to <math>\overline{AB}</math> and contain points <math>A</math> and <math>B</math>. For angle <math>C</math> to be acute, first draw a <math>45-45-90</math> triangle with <math>\overline{AB}</math> as the hypotenuse. Note <math>C</math> cannot be inside this triangle's circumscribed circle or else <math>\angle C > 90^\circ</math>. Hence, the area of <math>R</math> is the area of the large triangle minus the area of the small triangle minus the area of the circle, which is <math>\frac{14^2}{2}-\frac{4^2}{2}-(\frac{5\sqrt{2}}{2})^2\pi=98-8-\frac{25\pi}{2}</math>, which is approximately <math>51</math>. The answer is <math>\boxed{\mathrm{C}}</math>.
  
 
== See also ==
 
== See also ==
* [[2005 AMC 12B Problems]]
+
{{AMC12 box|year=2005|ab=B|num-b=17|num-a=19}}
 +
{{MAA Notice}}

Latest revision as of 20:20, 21 December 2020

Problem

Let $A(2,2)$ and $B(7,7)$ be points in the plane. Define $R$ as the region in the first quadrant consisting of those points $C$ such that $\triangle ABC$ is an acute triangle. What is the closest integer to the area of the region $R$?

$\mathrm{(A)}\ 25     \qquad \mathrm{(B)}\ 39     \qquad \mathrm{(C)}\ 51     \qquad \mathrm{(D)}\ 60      \qquad \mathrm{(E)}\ 80$

Solution

[asy] Label f;  f.p=fontsize(6); xaxis(-1,15,Ticks(f, 2.0));  yaxis(-1,15,Ticks(f, 2.0));  pair A = MP("A",(2,2),SW), B = MP("B",(7,7),NE); D(A--B); filldraw((0,4)--(4,0)--(14,0)--(0,14)--cycle,gray); filldraw(CP(0.5(A+B),A),white); D(A); D(B); [/asy]

For angle $A$ and $B$ to be acute, $C$ must be between the two lines that are perpendicular to $\overline{AB}$ and contain points $A$ and $B$. For angle $C$ to be acute, first draw a $45-45-90$ triangle with $\overline{AB}$ as the hypotenuse. Note $C$ cannot be inside this triangle's circumscribed circle or else $\angle C > 90^\circ$. Hence, the area of $R$ is the area of the large triangle minus the area of the small triangle minus the area of the circle, which is $\frac{14^2}{2}-\frac{4^2}{2}-(\frac{5\sqrt{2}}{2})^2\pi=98-8-\frac{25\pi}{2}$, which is approximately $51$. The answer is $\boxed{\mathrm{C}}$.

See also

2005 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png