Difference between revisions of "Carleman's Inequality"
(→Proof) |
Etmetalakret (talk | contribs) |
||
(One intermediate revision by the same user not shown) | |||
Line 25: | Line 25: | ||
* Steele, J. M., ''The Cauchy-Schwarz Master Class'', Cambridge University Press, ISBN 0-521-54677-X. | * Steele, J. M., ''The Cauchy-Schwarz Master Class'', Cambridge University Press, ISBN 0-521-54677-X. | ||
− | + | [[Category:Algebra]] | |
− | [[Category: | + | [[Category:Inequalities]] |
− | [[Category: |
Latest revision as of 15:39, 29 December 2021
Carleman's Inequality states that for nonnegative real numbers , unless all the are equal to zero.
Proof
Define . Then for all positive integers , Thus Now, by AM-GM, But , so for any integer , Therefore Since for all integers , the desired inequality holds.
See also
References
- Steele, J. M., The Cauchy-Schwarz Master Class, Cambridge University Press, ISBN 0-521-54677-X.