Difference between revisions of "2007 UNCO Math Contest II Problems/Problem 3"

(Created page with "== Problem == State the general rule illustrated here and prove it: <math> 1 ,\quad \begin{tabular}{cc} 1&1\\1&2\end{tabular} ,\quad \begin{tabular}{ccc} 1&1&1\\1&2&2\\1&2&3\e...")
 
m (Solution)
 
(One intermediate revision by one other user not shown)
Line 9: Line 9:
 
== Solution ==
 
== Solution ==
  
 +
<math>1^2+2^2+3^2+\cdots+n^2=1\cdot{n}+3\cdot{(n-1)}+5\cdot{(n-2)}+\cdots+(2n-1)\cdot{1}</math>
  
 
== See Also ==
 
== See Also ==

Latest revision as of 04:05, 12 January 2019

Problem

State the general rule illustrated here and prove it:

$1 ,\quad \begin{tabular}{cc} 1&1\\1&2\end{tabular} ,\quad \begin{tabular}{ccc} 1&1&1\\1&2&2\\1&2&3\end{tabular},\quad  \begin{tabular}{cccc} 1&1&1&1\\1&2&2&2\\1&2&3&3\\1&2&3&4 \end{tabular} ,\quad \begin{tabular}{ccccc} 1&1&1&1&1\\1&2&2&2&2\\1&2&3&3&3\\1&2&3&4&4\\1&2&3&4&5 \end{tabular} ,\quad \cdots$


Solution

$1^2+2^2+3^2+\cdots+n^2=1\cdot{n}+3\cdot{(n-1)}+5\cdot{(n-2)}+\cdots+(2n-1)\cdot{1}$

See Also

2007 UNCO Math Contest II (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10
All UNCO Math Contest Problems and Solutions