Difference between revisions of "Stewart's Theorem"

m (proofreading)
(Redirected page to Stewart's theorem)
(Tag: New redirect)
 
(30 intermediate revisions by 20 users not shown)
Line 1: Line 1:
== Statement ==
+
#REDIRECT[[Stewart's theorem]]
<center>[[Image:Stewart's_theorem.png]]</center>
 
 
 
If a [[cevian]] of length d is drawn and divides side a into segments m and n, then
 
 
 
<center><math> cnc + bmb = man + dad.</math></center>
 
 
 
 
 
== Proof ==
 
For this proof, we will use the law of cosines and the identity <math>\cos{\theta} = -\cos{(180 - \theta)}</math>.
 
 
 
Label the triangle <math>ABC</math> with a cevian extending from <math>A</math> onto <math>BC</math>, label that point <math>D</math>. Let CA = n. Let DB = m. Let AD = d. We can write two equations:
 
*<math> n^{2} + d^{2} - nd\cos{\angle CDA} = b^{2} </math>
 
*<math> m^{2} + d^{2} + md\cos{\angle CDA} = c^{2} </math>
 
When we write everything in terms of cos(CDA) we have:
 
*<math> \frac{n^2 + d^2 - b^2}{nd} = \cos{\angle CDA}</math>
 
*<math> \frac{c^2 - m^2 -d^2}{md} = \cos{\angle CDA}</math>
 
 
 
Now we set the two equal and arrive at Stewart's theorem: <math> c^{2}n + b^{2}m=m^{2}n +n^{2}m + d^{2}m + d^{2}n </math>.
 
 
 
== See also ==
 
* [[Menelaus' Theorem]]
 
* [[Ceva's Theorem]]
 
* [[Geometry]]
 
* [[Angle Bisector Theorem]]
 

Latest revision as of 15:22, 9 May 2021

Redirect to: