Difference between revisions of "1953 AHSME Problems/Problem 7"
(Created page with "== Problem == The fraction <math>\frac{\sqrt{a^2+x^2}-\frac{x^2-a^2}{\sqrt{a^2+x^2}}}{a^2+x^2}</math> reduces to: <math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ \frac{2a^2}{a^2...") |
(Previous page was a mess) |
||
(One intermediate revision by one other user not shown) | |||
Line 11: | Line 11: | ||
== Solution == | == Solution == | ||
− | Multiplying the numerator and denominator by <math>\sqrt{a^2+x^2}</math> results in <cmath>\frac{a^2+x^2-x^2+a^2}{(a^2+x^2)(\sqrt{a^2+x^2)}}=\frac{2a^2}{(a^2+x^2)(\sqrt{a^2+x^2)}}.</cmath> Since <math>\sqrt{a^2+x^2}=(a^2+x^2)^{\frac{1}{2}}</math>, | + | Multiplying the numerator and denominator by <math>\sqrt{a^2+x^2}</math> results in |
+ | <cmath>\frac{a^2+x^2-x^2+a^2}{(a^2+x^2)(\sqrt{a^2+x^2)}}=\frac{2a^2}{(a^2+x^2)(\sqrt{a^2+x^2)}}.</cmath> | ||
+ | Since <math>\sqrt{a^2+x^2}=(a^2+x^2)^{\frac{1}{2}}</math>, | ||
+ | the denominator is <math>(a^2+x^2)^2\cdot (a^2+x^2)^{\frac{1}{2}} = (a^2+x^2)^{\frac{3}{2}}</math> <math>\boxed{\textbf{(D) } \frac{2a^2}{(a^2+x^2)^{\frac{3}{2}}}}</math>. | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AHSME 50p box|year=1953|num-b=6|num-a=8}} | ||
+ | |||
+ | [[Category:Introductory Algebra Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 19:40, 1 April 2017
Problem
The fraction reduces to:
Solution
Multiplying the numerator and denominator by results in Since , the denominator is .
See Also
1953 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.