Difference between revisions of "2017 USAJMO Problems/Problem 3"
(→Solution) |
m |
||
(38 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | (<math>*</math>) Let <math>ABC</math> be an equilateral triangle and let <math>P</math> be a point on its circumcircle. Let lines <math>PA</math> and <math> | + | (<math>*</math>) Let <math>ABC</math> be an equilateral triangle and let <math>P</math> be a point on its circumcircle. Let lines <math>PA</math> and <math>BC</math> intersect at <math>D</math>; let lines <math>PB</math> and <math>CA</math> intersect at <math>E</math>; and let lines <math>PC</math> and <math>AB</math> intersect at <math>F</math>. Prove that the area of triangle <math>DEF</math> is twice that of triangle <math>ABC</math>. |
− | |||
− | |||
<asy> | <asy> | ||
− | size( | + | size(3inch); |
pair A = (0, 3sqrt(3)), B = (-3,0), C = (3,0), P = (0, -sqrt(3)), D = (0, 0), E1 = (6, -3sqrt(3)), F = (-6, -3sqrt(3)), O = (0, sqrt(3)); | pair A = (0, 3sqrt(3)), B = (-3,0), C = (3,0), P = (0, -sqrt(3)), D = (0, 0), E1 = (6, -3sqrt(3)), F = (-6, -3sqrt(3)), O = (0, sqrt(3)); | ||
draw(Circle(O, 2sqrt(3)), black); | draw(Circle(O, 2sqrt(3)), black); | ||
Line 21: | Line 19: | ||
label("F", F, SW); | label("F", F, SW); | ||
</asy> | </asy> | ||
− | {{ | + | |
+ | ==Solution (No Bash)== | ||
+ | |||
+ | Extend <math>DP</math> to hit <math>EF</math> at <math>K</math>. Then note that <math>[DEF]\cdot\frac{AK}{DK}\cdot\frac{AB}{AF}\cdot\frac{AC}{AE}=[ABC].</math> Letting <math>BF=x</math> and <math>PF=y</math>, we have that <math>\frac{x+AB}y=\frac{y+PC}x=\frac{AC}{BP}.</math> Solving and simplifying using LoC on <math>\triangle BPC</math> gives <math>\frac{AB}{AF}=\frac{PC}{PB+PC}.</math> Similarly, <math>\frac{AC}{AE}=\frac{PB}{PB+PC}.</math> | ||
+ | |||
+ | |||
+ | |||
+ | Now we find <math>\frac{AK}{DK}.</math> Note that <math>\frac{AD}{DP}=\frac{AD}{BD}\cdot\frac{BD}{DP}=\frac{AC}{PB}\cdot\frac{AB}{PC}=\frac{AB^2}{PB\cdot PC}.</math> Now let <math>E'=DE\cap AF</math> and <math>F'=DF\cap AE</math>. Then by an area/concurrence theorem, we have that <math>\frac{DK}{AK}+\frac{DE'}{EE'}+\frac{DF'}{FF'}=1,</math> or <math>\frac{DK}{AK}+(1-\frac{DP}{AP}-\frac{DC}{BC})+(1-\frac{DP}{AP}-\frac{BD}{BC})=1.</math> Thus we have that <math>\frac{DK}{AK}=2\cdot\frac{DP}{AP}.</math> | ||
+ | |||
+ | |||
+ | |||
+ | Manipulating these gives <math>\frac{AK}{DK}=\frac{(PB+PC)^2}{2\cdot PB\cdot PC}.</math> Thus <math>\frac{AK}{DK}\cdot\frac{AB}{AF}\cdot\frac{AC}{AE}=\frac12,</math> and we are done. | ||
+ | |||
+ | ~cocohearts | ||
+ | |||
+ | ==Solution 1== | ||
+ | WLOG, let <math>AB = 1</math>. Let <math>[ABD] = X, [ACD] = Y</math>, and <math>\angle BAD = \theta</math>. After some angle chasing, we find that <math>\angle BCF \cong \angle BEC \cong \theta</math> and <math>\angle FBC \cong \angle BCE \cong 120^{\circ}</math>. Therefore, <math>\triangle FBC</math> ~ <math>\triangle BCE</math>. | ||
+ | |||
+ | ------------------------------------------------------------------------------------------------------ | ||
+ | |||
+ | Lemma 1: If <math>BF = k</math>, then <math>CE = \frac 1k</math>. | ||
+ | This lemma results directly from the fact that <math>\triangle FBC</math> ~ <math>\triangle BCE</math>; <math>\frac{BF}{BC} = \frac{BF}{1} = \frac{BC}{CE} = \frac{1}{CE}</math>, or <math>CE = \frac{1}{BF}</math>. | ||
+ | |||
+ | ------------------------------------------------------------------------------------------------------ | ||
+ | |||
+ | Lemma 2: <math>[AEF] = (k+\frac 1k + 2)(X+Y)</math>. | ||
+ | We see that <math>[AEF] = (X+Y) \frac{[AEF]}{[ABC]} = (k+1)(1+\frac 1k)(X+Y) = (k + \frac 1k + 2)(X+Y)</math>, as desired. | ||
+ | |||
+ | ------------------------------------------------------------------------------------------------------ | ||
+ | |||
+ | Lemma 3: <math>\frac{X}{Y} = k</math>. | ||
+ | We see that | ||
+ | <cmath>\frac XY = \frac{\frac 12 (AB)(AD) \sin(\theta)}{\frac 12 (AC)(AD) \sin (60^{\circ} - \theta)} = \frac{\sin(\theta)}{\sin (60^{\circ} - \theta)}.</cmath> | ||
+ | However, after some angle chasing and by the Law of Sines in <math>\triangle BCF</math>, we have <math>\frac{k}{\sin(\theta)} = \frac{1}{\sin(60^{\circ} - \theta)}</math>, or <math>k = \frac{\sin(\theta)}{\sin (60^{\circ} - \theta)}</math>, which implies the result. | ||
+ | |||
+ | ------------------------------------------------------------------------------------------------------ | ||
+ | |||
+ | By the area lemma, we have <math>[BDF] = kX</math> and <math>[CDF] = \frac{Y}{k}</math>. | ||
+ | |||
+ | We see that <math>[DEF] = [AEF] - [ABC] - [BDF] - [DCE] = Xk + Yk + \frac Xk + \frac Yk + 2X + 2Y - X - Y - Xk - \frac Yk = X + Y + \frac Xk + yk</math>. Thus, it suffices to show that <math>X + Y + \frac Xk + Yk = 2X + 2Y</math>, or <math>\frac Xk + Yk = X + Y</math>. Rearranging, we find this to be equivalent to <math>\frac XY = k</math>, which is Lemma 3, so the result has been proven. | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | We will use barycentric coordinates and vectors. Let <math>\vec{X}</math> be the position vector of a point <math>X.</math> The point <math>(x, y, z)</math> in barycentric coordinates denotes the point <math>x\vec{A} + y\vec{B} + z\vec{C}.</math> For all points in the plane of <math>\triangle{ABC},</math> we have <math>x + y + z = 1.</math> It is clear that <math>A = (1, 0, 0)</math>; <math>B = (0, 1, 0)</math>; and <math>C = (0, 0, 1).</math> | ||
+ | |||
+ | Define the point <math>P</math> as <math>P = \left(x_P, y_P, z_P\right).</math> The fact that <math>P</math> lies on the circumcircle of <math>\triangle{ABC}</math> gives us <math>x^2_P + y^2_P + z^2_P = 1.</math> This, along with the condition <math>x_P + y_P + z_P = 1</math> inherent to barycentric coordinates, gives us <math>x_Py_P + y_Pz_P + z_Px_P = 0.</math> | ||
+ | |||
+ | We can write the equations of the following lines: | ||
+ | <cmath>BC: x = 0</cmath> | ||
+ | <cmath>CA: y = 0</cmath> | ||
+ | <cmath>AB: z = 0</cmath> | ||
+ | <cmath>PA: \frac{y}{y_P} = \frac{z}{z_P}</cmath> | ||
+ | <cmath>PB: \frac{x}{x_P} = \frac{z}{z_P}</cmath> | ||
+ | <cmath>PC: \frac{x}{x_P} = \frac{y}{y_P}.</cmath> | ||
+ | |||
+ | We can then solve for the points <math>D, E, F</math>: | ||
+ | <cmath>D = \left(0, \frac{y_P}{y_P + z_P}, \frac{z_P}{y_P + z_P}\right)</cmath> | ||
+ | <cmath>E = \left(\frac{x_P}{x_P + z_P}, 0, \frac{z_P}{x_P + z_P}\right)</cmath> | ||
+ | <cmath>F = \left(\frac{x_P}{x_P + y_P}, \frac{y_P}{x_P + y_P}, 0\right).</cmath> | ||
+ | |||
+ | The area of an arbitrary triangle <math>XYZ</math> is: | ||
+ | <cmath>[XYZ] = \frac{1}{2}|\vec{XY}\times\vec{XZ}|</cmath> | ||
+ | <cmath>[XYZ] = \frac{1}{2}|(\vec{X}\times\vec{Y}) + (\vec{Y}\times\vec{Z}) + (\vec{Z}\times\vec{X})|.</cmath> | ||
+ | |||
+ | To calculate <math>[DEF],</math> we wish to compute <math>(\vec{D}\times\vec{E}) + (\vec{E}\times\vec{F}) + (\vec{F}\times\vec{D}).</math> After a lot of computation, we obtain the following: | ||
+ | <cmath>(\vec{D}\times\vec{E}) + (\vec{E}\times\vec{F}) + (\vec{F}\times\vec{D}) = \frac{2x_Py_Pz_P}{(x_P + y_P)(y_P + z_P)(z_P + x_P)}[(\vec{A}\times\vec{B}) + (\vec{B}\times\vec{C}) + (\vec{C}\times\vec{A})].</cmath> | ||
+ | |||
+ | Evaluating the denominator, | ||
+ | <cmath>(x_P + y_P)(y_P + z_P)(z_P + x_P) = (1 - z_P)(1 - y_P)(1 - x_P)</cmath> | ||
+ | <cmath>(x_P + y_P)(y_P + z_P)(z_P + x_P) = 1 - (x_P + y_P + z_P) + (x_Py_P + y_Pz_P + z_Px_P) - x_Py_Pz_P.</cmath> | ||
+ | |||
+ | Since <math>x_P + y_P + z_P = 1</math> and <math>x_Py_P + y_Pz_P + z_Px_P = 0,</math> it follows that: | ||
+ | <cmath>(x_P + y_P)(y_P + z_P)(z_P + x_P) = -x_Py_Pz_P.</cmath> | ||
+ | |||
+ | We thus conclude that: | ||
+ | <cmath>(\vec{D}\times\vec{E}) + (\vec{E}\times\vec{F}) + (\vec{F}\times\vec{D}) = -2[(\vec{A}\times\vec{B}) + (\vec{B}\times\vec{C}) + (\vec{C}\times\vec{A})].</cmath> | ||
+ | |||
+ | From this, it follows that <math>[DEF] = 2[ABC],</math> and we are done. | ||
+ | |||
+ | |||
+ | ==Solution 3== | ||
+ | <center><asy> | ||
+ | import cse5; | ||
+ | import graph; | ||
+ | import olympiad; | ||
+ | |||
+ | size(3inch); | ||
+ | |||
+ | |||
+ | pair A = (0, 3sqrt(3)), B = (-3,0), C = (3,0), O = (0, sqrt(3)); | ||
+ | pair P = (-1, -sqrt(11)+sqrt(3)); | ||
+ | path circle = Circle(O, 2sqrt(3)); | ||
+ | pair D = extension(A,P,B,C); | ||
+ | pair E1 = extension(A,C,B,P); | ||
+ | pair F=extension(A,B,C,P); | ||
+ | draw(circle, black); | ||
+ | draw(A--B--C--cycle); | ||
+ | draw(B--E1--C); | ||
+ | draw(C--F--B); | ||
+ | draw(A--P); | ||
+ | draw(D--E1--F--cycle, dashed); | ||
+ | pair G = extension(O,D,F,E1); | ||
+ | draw(O--G,dashed); | ||
+ | label("A", A, N); | ||
+ | label("B", B, W); | ||
+ | label("C", C, E); | ||
+ | label("P", P, S); | ||
+ | label("D", D, NW); | ||
+ | label("E", E1, SE); | ||
+ | label("F", F, SW); | ||
+ | dot("O", O, SE); | ||
+ | </asy></center> | ||
+ | We'll use coordinates and shoelace. Let the origin be the midpoint of <math>BC</math>. Let <math>AB=2</math>, and <math>BF = 2x</math>, then <math>F=(-x-1,-x\sqrt{3})</math>. Using the facts <math>\triangle{CBP} \sim \triangle{CFB}</math> and <math>\triangle{BCP} \sim \triangle{BEC}</math>, we have <math>BF * CE = BC^2</math>, so <math>CE = \frac{1}{2x}</math>, and <math> E = (\frac{1}{x}+1,-\frac{\sqrt{3}}{x})</math>. | ||
+ | |||
+ | The slope of <math>FE</math> is | ||
+ | <cmath>k = \frac{-\frac{\sqrt{3}}{x} + x\sqrt{3}}{2+\frac{1}{x}+x}</cmath> | ||
+ | It is well-known that <math>\triangle{DFE}</math> is self-polar, so <math>FE</math> is the polar of <math>D</math>, i.e., <math>OD</math> is perpendicular to <math>FE</math>. Therefore, the slope of <math>OD</math> is <math>-\frac{1}{k}</math>. Since <math>O=(0,\frac{1}{\sqrt{3}})</math>, we get the x-coordinate of <math>D</math>, <math>x_D = \frac{k}{\sqrt{3}}</math>, i.e., <math>D = (\frac{k}{\sqrt{3}},0)</math>. Using shoelace, | ||
+ | <cmath>2[\triangle{FDE}] = \frac{k}{\sqrt{3}}(-x\sqrt{3})+(-x-1)(-\frac{\sqrt{3}}{x})- | ||
+ | (-x\sqrt{3})(\frac{1}{x}+1) - (-\frac{\sqrt{3}}{x})\frac{k}{\sqrt{3}} </cmath> | ||
+ | <cmath> = 2\sqrt{3} + \sqrt{3}(\frac{1}{x}+x) + k(\frac{1}{x} - x)</cmath> | ||
+ | <cmath> = 2\sqrt{3} + \sqrt{3}(\frac{2(\frac{1}{x}+x)+(\frac{1}{x}+x)^2-(\frac{1}{x}-x)^2} | ||
+ | {2+\frac{1}{x}+x})</cmath> | ||
+ | <cmath> = 2\sqrt{3} + \sqrt{3}(\frac{2(\frac{1}{x}+x)+4}{2+\frac{1}{x}+x})</cmath> | ||
+ | <cmath> = 4\sqrt{3}</cmath> | ||
+ | So <math>[\triangle{FDE}] = 2\sqrt{3} = 2[\triangle{ABC}]</math>. Q.E.D | ||
+ | |||
+ | By Mathdummy. | ||
+ | ==Solution 4 Without the nasty computations == | ||
+ | Note that <math>\angle{APB}=\angle{FPB}=\angle{EPC}=\angle{APC} = 60</math>. We will use a special version of Stewart's theorem for angle bisectors in triangle with an 120 angle to calculate various side lengths. | ||
+ | |||
+ | Let <math>BP = x</math> and <math>CP = y</math>. Then, | ||
+ | From Law of Cosine, <math>BC^2 = x^2 + y^2 + xy</math>. | ||
+ | |||
+ | From Ptolemy's theorem, <math>AP BC = x AC + y AB</math>, so <math>AP = x + y</math>. | ||
+ | |||
+ | Lemma 1: In Triangle ABC with side lengths <math>a,b,c</math> and <math>\angle A =120^o</math>, the length of the angle bisector of <math>A</math> is | ||
+ | <cmath> d = \frac{bc}{b+c}</cmath> | ||
+ | This can be easily proved with Stewart's and Law of Cosine. | ||
+ | |||
+ | Using Lemma 1, we have | ||
+ | <cmath>PD = \frac{xy}{x+y}</cmath> | ||
+ | <cmath> x = \frac{FP AP}{FP + AP}</cmath> | ||
+ | <cmath> y = \frac{EP AP}{EP + AP}</cmath> | ||
+ | Plug in <math>AP=x+y</math>, we get: | ||
+ | <cmath> PD = \frac{xy}{x+y}</cmath> | ||
+ | <cmath> FP = \frac{x(x+y)}{y}</cmath> | ||
+ | <cmath> EP = \frac{y(x+y)}{x}</cmath> | ||
+ | Then | ||
+ | <cmath> [\triangle{FDE}] = \frac{1}{2}\sin(120)(PDFP + FPEP + EPPD)</cmath> | ||
+ | <cmath>= \frac{\sqrt{3}}{4}(x^2 + (x+y)^2 + y^2) </cmath> | ||
+ | <cmath> = \frac{\sqrt{3}}{2}(x^2 + xy + y^2) </cmath> | ||
+ | <cmath> = \frac{\sqrt{3}}{2} BC^2</cmath> | ||
+ | <cmath> = 2 [\triangle{ABC}]</cmath> | ||
+ | |||
+ | By Mathdummy. | ||
==See also== | ==See also== | ||
{{USAJMO newbox|year=2017|num-b=2|num-a=4}} | {{USAJMO newbox|year=2017|num-b=2|num-a=4}} |
Latest revision as of 02:13, 16 March 2022
Contents
Problem
() Let be an equilateral triangle and let be a point on its circumcircle. Let lines and intersect at ; let lines and intersect at ; and let lines and intersect at . Prove that the area of triangle is twice that of triangle .
Solution (No Bash)
Extend to hit at . Then note that Letting and , we have that Solving and simplifying using LoC on gives Similarly,
Now we find Note that Now let and . Then by an area/concurrence theorem, we have that or Thus we have that
Manipulating these gives Thus and we are done.
~cocohearts
Solution 1
WLOG, let . Let , and . After some angle chasing, we find that and . Therefore, ~ .
Lemma 1: If , then . This lemma results directly from the fact that ~ ; , or .
Lemma 2: . We see that , as desired.
Lemma 3: . We see that However, after some angle chasing and by the Law of Sines in , we have , or , which implies the result.
By the area lemma, we have and .
We see that . Thus, it suffices to show that , or . Rearranging, we find this to be equivalent to , which is Lemma 3, so the result has been proven.
Solution 2
We will use barycentric coordinates and vectors. Let be the position vector of a point The point in barycentric coordinates denotes the point For all points in the plane of we have It is clear that ; ; and
Define the point as The fact that lies on the circumcircle of gives us This, along with the condition inherent to barycentric coordinates, gives us
We can write the equations of the following lines:
We can then solve for the points :
The area of an arbitrary triangle is:
To calculate we wish to compute After a lot of computation, we obtain the following:
Evaluating the denominator,
Since and it follows that:
We thus conclude that:
From this, it follows that and we are done.
Solution 3
We'll use coordinates and shoelace. Let the origin be the midpoint of . Let , and , then . Using the facts and , we have , so , and .
The slope of is It is well-known that is self-polar, so is the polar of , i.e., is perpendicular to . Therefore, the slope of is . Since , we get the x-coordinate of , , i.e., . Using shoelace, So . Q.E.D
By Mathdummy.
Solution 4 Without the nasty computations
Note that . We will use a special version of Stewart's theorem for angle bisectors in triangle with an 120 angle to calculate various side lengths.
Let and . Then, From Law of Cosine, .
From Ptolemy's theorem, , so .
Lemma 1: In Triangle ABC with side lengths and , the length of the angle bisector of is This can be easily proved with Stewart's and Law of Cosine.
Using Lemma 1, we have Plug in , we get: Then
By Mathdummy.
See also
2017 USAJMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |