|
|
(5 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT [[2010_AMC_12A_Problems/Problem_8]] |
− | Triangle <math>ABC</math> has <math>AB=2 \cdot AC</math>. Let <math>D</math> and <math>E</math> be on <math>\overline{AB}</math> and <math>\overline{BC}</math>, respectively, such that <math>\angle BAE = \angle ACD</math>. Let <math>F</math> be the intersection of segments <math>AE</math> and <math>CD</math>, and suppose that <math>\triangle CFE</math> is equilateral. What is <math>\angle ACB</math>?
| |
− | | |
− | <math>\textbf{(A)}\ 60^\circ \qquad \textbf{(B)}\ 75^\circ \qquad \textbf{(C)}\ 90^\circ \qquad \textbf{(D)}\ 105^\circ \qquad \textbf{(E)}\ 120^\circ</math>
| |
− | | |
− | == Solution ==
| |
− | <asy>
| |
− | pair A,B,C,D,E,F,G,H;
| |
− | G=(0,10);
| |
− | A=(0,3.464);
| |
− | B=(6,0);
| |
− | C=(0,0);
| |
− | draw(A--B--C--cycle);
| |
− | F=(1,1.73);
| |
− | E=(2,0);
| |
− | draw(C--F--E);
| |
− | D=(1.5,2.6);
| |
− | draw(C--D);
| |
− | label("$A$",A,W);
| |
− | label("$B$",B,S);
| |
− | label("$C$",C,S);
| |
− | label("$F$",F,N);
| |
− | label("$D$",D,NE);
| |
− | label("$E$",E,S);
| |
− | draw(A--E);
| |
− | draw(anglemark(E,A,B));
| |
− | draw(anglemark(D,C,A));
| |
− | </asy>
| |
− | | |
− | | |
− | Let <math>\angle BAE = \angle ACD = x</math>.
| |
− | | |
− | <cmath>\begin{align*}\angle BCD &= \angle AEC = 60^\circ\\
| |
− | \angle EAC + \angle FCA + \angle ECF + \angle AEC &= \angle EAC + x + 60^\circ + 60^\circ = 180^\circ\\
| |
− | \angle EAC &= 60^\circ - x\\
| |
− | \angle BAC &= \angle EAC + \angle BAE = 60^\circ - x + x = 60^\circ\end{align*}</cmath>
| |
− | | |
− | Since <math>\frac{AC}{AB} = \frac{1}{2}</math>, <math>\angle BCA = \boxed{90^\circ\ \textbf{(C)}}</math>
| |
− | | |
− | == See also ==
| |
− | {{AMC10 box|year=2010|num-b=13|num-a=15|ab=A}}
| |
− | | |
− | [[Category:Introductory Geometry Problems]] | |
− | {{MAA Notice}}
| |