Difference between revisions of "2016 AMC 10A Problems/Problem 16"

m (Solution)
(Video Solution)
 
(2 intermediate revisions by 2 users not shown)
Line 15: Line 15:
 
==Solution==
 
==Solution==
 
Consider a point <math>(x, y)</math>. Reflecting it about the <math>x</math>-axis will map it to <math>(x, -y)</math>, and rotating it counterclockwise about the origin by <math>90^{\circ}</math> will map it to <math>(y, x)</math>. The operation that undoes this is a reflection about the <math>y = x</math>, so the answer is <math>\boxed{\textbf{(D)}}</math>.
 
Consider a point <math>(x, y)</math>. Reflecting it about the <math>x</math>-axis will map it to <math>(x, -y)</math>, and rotating it counterclockwise about the origin by <math>90^{\circ}</math> will map it to <math>(y, x)</math>. The operation that undoes this is a reflection about the <math>y = x</math>, so the answer is <math>\boxed{\textbf{(D)}}</math>.
 +
 +
==Video Solution (CREATIVE THINKING)==
 +
https://youtu.be/xUJao7B5BHw
 +
 +
~Education, the Study of Everything
 +
 +
 +
 +
==Video Solution==
 +
 +
https://www.youtube.com/watch?v=VHXDQz5BG8U
 +
 +
==Video Solution 2==
 +
https://youtu.be/9AqQiA0aE24
 +
 +
~IceMatrix
  
 
==See Also==
 
==See Also==
 +
 +
 
{{AMC10 box|year=2016|ab=A|num-b=15|num-a=17}}
 
{{AMC10 box|year=2016|ab=A|num-b=15|num-a=17}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 13:52, 25 June 2023

Problem

A triangle with vertices $A(0, 2)$, $B(-3, 2)$, and $C(-3, 0)$ is reflected about the $x$-axis, then the image $\triangle A'B'C'$ is rotated counterclockwise about the origin by $90^{\circ}$ to produce $\triangle A''B''C''$. Which of the following transformations will return $\triangle A''B''C''$ to $\triangle ABC$?

$\textbf{(A)}$ counterclockwise rotation about the origin by $90^{\circ}$.

$\textbf{(B)}$ clockwise rotation about the origin by $90^{\circ}$.

$\textbf{(C)}$ reflection about the $x$-axis

$\textbf{(D)}$ reflection about the line $y = x$

$\textbf{(E)}$ reflection about the $y$-axis.

Solution

Consider a point $(x, y)$. Reflecting it about the $x$-axis will map it to $(x, -y)$, and rotating it counterclockwise about the origin by $90^{\circ}$ will map it to $(y, x)$. The operation that undoes this is a reflection about the $y = x$, so the answer is $\boxed{\textbf{(D)}}$.

Video Solution (CREATIVE THINKING)

https://youtu.be/xUJao7B5BHw

~Education, the Study of Everything


Video Solution

https://www.youtube.com/watch?v=VHXDQz5BG8U

Video Solution 2

https://youtu.be/9AqQiA0aE24

~IceMatrix

See Also

2016 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png