Difference between revisions of "2018 AMC 12A Problems/Problem 5"
(Created page with "==Problem== What is the sum of all possible values of <math>k</math> for which the polynomials <math>x^2 - 3x + 2</math> and <math>x^2 - 5x + k</math> have a root in common?...") |
|||
(6 intermediate revisions by 6 users not shown) | |||
Line 3: | Line 3: | ||
What is the sum of all possible values of <math>k</math> for which the polynomials <math>x^2 - 3x + 2</math> and <math>x^2 - 5x + k</math> have a root in common? | What is the sum of all possible values of <math>k</math> for which the polynomials <math>x^2 - 3x + 2</math> and <math>x^2 - 5x + k</math> have a root in common? | ||
− | <math>\textbf{(A) }3 \qquad\textbf{(B) }4 \qquad\textbf{(C) }5 \qquad\textbf{(D) }6 \qquad\textbf{(E) }10 | + | <math>\textbf{(A) }3 \qquad\textbf{(B) }4 \qquad\textbf{(C) }5 \qquad\textbf{(D) }6 \qquad\textbf{(E) }10</math> |
==Solution== | ==Solution== | ||
+ | |||
+ | We factor <math>x^2-3x+2</math> into <math>(x-1)(x-2)</math>. Thus, either <math>1</math> or <math>2</math> is a root of <math>x^2-5x+k</math>. If <math>1</math> is a root, then <math>1^2-5\cdot1+k=0</math>, so <math>k=4</math>. If <math>2</math> is a root, then <math>2^2-5\cdot2+k=0</math>, so <math>k=6</math>. The sum of all possible values of <math>k</math> is <math>\boxed{\textbf{(E) }10}</math>. | ||
+ | |||
+ | == Video Solution 1 == | ||
+ | https://youtu.be/aZdSO-4g40A | ||
+ | |||
+ | ~Education, the Study of Everything | ||
==See Also== | ==See Also== | ||
− | {{ | + | |
− | + | {{AMC12 box|year=2018|ab=A|num-b=4|num-a=6}} | |
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 19:56, 28 October 2022
Contents
Problem
What is the sum of all possible values of for which the polynomials and have a root in common?
Solution
We factor into . Thus, either or is a root of . If is a root, then , so . If is a root, then , so . The sum of all possible values of is .
Video Solution 1
~Education, the Study of Everything
See Also
2018 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 4 |
Followed by Problem 6 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.