Difference between revisions of "1959 AHSME Problems/Problem 7"

(Solution)
m (category)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==Solution==
+
== Problem ==
If we let <math>a=3</math> and <math>d=1</math>, then we will get a <math>3</math>-<math>4</math>-<math>5</math> triangle, which is a right triangle. So, the answer is <math>\boxed{\textbf{(D)}3:1}</math>.
+
The sides of a right triangle are <math>a</math>, <math>a+d</math>, and <math>a+2d</math>, with <math>a</math> and <math>d</math> both positive. The ratio of <math>a</math> to <math>d</math> is:
 +
<math>\textbf{(A)}\ 1:3 \qquad\textbf{(B)}\ 1:4 \qquad\textbf{(C)}\ 2:1\qquad\textbf{(D)}\ 3:1\qquad\textbf{(E)}\ 3:4  </math> 
 +
 
 +
== Solution ==
 +
 
 +
If we let <math>a=3</math> and <math>d=1</math>, then we will get a <math>3</math>-<math>4</math>-<math>5</math> triangle, which is a right triangle. So, the answer is <math>\boxed{\textbf{(D)} \ 3:1}</math>.
 +
 
 +
==See also==
 +
{{AHSME 50p box|year=1959|num-b=6|num-a=8}}
 +
{{MAA Notice}}
 +
[[Category:Introductory Geometry Problems]]

Latest revision as of 11:01, 21 July 2024

Problem

The sides of a right triangle are $a$, $a+d$, and $a+2d$, with $a$ and $d$ both positive. The ratio of $a$ to $d$ is: $\textbf{(A)}\ 1:3 \qquad\textbf{(B)}\ 1:4 \qquad\textbf{(C)}\ 2:1\qquad\textbf{(D)}\ 3:1\qquad\textbf{(E)}\ 3:4$

Solution

If we let $a=3$ and $d=1$, then we will get a $3$-$4$-$5$ triangle, which is a right triangle. So, the answer is $\boxed{\textbf{(D)} \ 3:1}$.

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png