Difference between revisions of "2018 AMC 12A Problems/Problem 14"
(→Solution 4) |
|||
Line 88: | Line 88: | ||
~OlutosinNGA | ~OlutosinNGA | ||
+ | ==Solution 5== | ||
+ | <math>\log_{3x} 4=\log_{2x} 8\implies 2\log_{3x} 2=3\log_{2x} 2 \implies \frac{2}{3}=\frac{\log_{2x}2}{\log_{2x}3}</math>. We know that <math>\log_a{b}=\frac{\log_{c}b}{\log_{c}a}=\frac{\frac{1}{\log_b{c}}}{\frac{1}{\log_a{c}}}=\frac{\log_a{c}}{\log_b{c}}</math>. Thus <math>\frac{2}{3}=\frac{\log_{2x}2}{\log_{2x}3}\implies \frac{2}{3}=\log_{2x}{3x}\implies (2x)^{\frac{2}{3}}=3x\implies 2^{\frac{2}{3}}x^{\frac{2}{3}}=3x\implies 2^{\frac{2}{3}}=3x^{\frac{1}{3}}\implies x^{\frac{1}{3}}=\frac{2^{\frac{2}{3}}}{3}\implies x=\frac{2^2}{3^3}=\frac{4}{27}</math>. <math>4</math> and <math>27</math> are indeed relatively prime thus our final answer is <math>4+27=31 \text{which is }\boxed{\textbf{(D)}}</math> | ||
+ | |||
+ | -vsamc | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2018|ab=A|num-b=13|num-a=15}} | {{AMC12 box|year=2018|ab=A|num-b=13|num-a=15}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 18:20, 5 April 2020
Problem
The solutions to the equation , where is a positive real number other than or , can be written as where and are relatively prime positive integers. What is ?
Solution 1
Base switch to log 2 and you have .
Then . so and we have leading to (jeremylu)
Solution 2
If you multiply both sides by
then it should come out to * = *
that then becomes * = *
which simplifies to
so now = putting in exponent form gets
=
so =
dividing yields and
- Pikachu13307
Solution 3
We can convert both and into and , respectively, giving:
Converting the bases of the right side, we get
Dividing both sides by , we get
Which simplifies to
Log expansion allows us to see that
, which then simplifies to
Thus,
And
-lepetitmoulin
Solution 4
is the same as
Using Reciprocal law, we get
~OlutosinNGA
Solution 5
. We know that . Thus . and are indeed relatively prime thus our final answer is
-vsamc
See Also
2018 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.