Difference between revisions of "1957 AHSME Problems/Problem 43"

(Blanked the page)
(Tag: Blanking)
Line 1: Line 1:
 +
== Problem ==
 +
We define a lattice point as a point whose coordinates are integers, zero admitted.
 +
Then the number of lattice points on the boundary and inside the region bounded by the <math>x</math>-axis,
 +
the line <math>x = 4</math>, and the parabola <math>y = x^2</math> is:
  
 +
<math>\textbf{(A)}\ 24 \qquad
 +
\textbf{(B)}\ 35\qquad
 +
\textbf{(C)}\ 34\qquad
 +
\textbf{(D)}\ 30\qquad
 +
\textbf{(E)}\ \infty</math> 
 +
 +
== Solution ==
 +
<math>\boxed{\textbf{(B) }35}</math>.
 +
 +
== See Also ==
 +
{{AHSME 50p box|year=1957|num-b=40|num-a=42}}
 +
{{MAA Notice}}
 +
[[Category:AHSME]][[Category:AHSME Problems]]

Revision as of 09:20, 27 July 2024

Problem

We define a lattice point as a point whose coordinates are integers, zero admitted. Then the number of lattice points on the boundary and inside the region bounded by the $x$-axis, the line $x = 4$, and the parabola $y = x^2$ is:

$\textbf{(A)}\ 24 \qquad  \textbf{(B)}\ 35\qquad  \textbf{(C)}\ 34\qquad  \textbf{(D)}\ 30\qquad  \textbf{(E)}\ \infty$

Solution

$\boxed{\textbf{(B) }35}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 40
Followed by
Problem 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png