Difference between revisions of "2011 AMC 12B Problems/Problem 20"
Caroline2023 (talk | contribs) m (→Solutions) |
Rockingmat (talk | contribs) (→Solution 2 (Algebra)) |
||
Line 32: | Line 32: | ||
After a few algebraic manipulations: | After a few algebraic manipulations: | ||
− | <math>\Rightarrow R | + | <math>\Rightarrow R=\frac{65}{8} \Rightarrow 3R = \boxed{\frac{195}{8}}</math>. |
===Solution 3 (Homothety)=== | ===Solution 3 (Homothety)=== |
Revision as of 12:40, 15 September 2019
Contents
Problem
Triangle has , and . The points , and are the midpoints of , and respectively. Let be the intersection of the circumcircles of and . What is ?
Solutions
Solution 1 (Coordinates)
Let us also consider the circumcircle of .
Note that if we draw the perpendicular bisector of each side, we will have the circumcenter of which is , Also, since . is cyclic, similarly, and are also cyclic. With this, we know that the circumcircles of , and all intersect at , so is .
The question now becomes calculate the sum of distance from each vertices to the circumcenter.
We can calculate the distances with coordinate geometry. (Note that because is the circumcenter.)
Let , , ,
Then is on the line and also the line with slope and passes through .
So
and
Solution 2 (Algebra)
Consider an additional circumcircle on . After drawing the diagram, it is noticed that each triangle has side values: , , . Thus they are congruent, and their respective circumcircles are. By inspection, we see that , , and are the circumdiameters, and so they are congruent. Therefore, the solution can be found by calculating one of these circumdiameters and multiplying it by a factor of . We can find the circumradius quite easily with the formula , s.t. and R is the circumradius. Since :
After a few algebraic manipulations:
.
Solution 3 (Homothety)
Let be the circumcenter of and denote the length of the altitude from Note that a homothety centered at with ratio takes the circumcircle of to the circumcircle of . It also takes the point diametrically opposite on the circumcircle of to Therefore, lies on the circumcircle of Similarly, it lies on the circumcircle of By Pythagorean triples, Finally, our answer is
Solution 4 (the fastest, easiest, and therefore best way ever)
After doing a lot of problems with 13-14-15 triangles, you might remember that the circumradius of the triangle is . Because the problem deals with congruent triangles and circumcircles, you can guess that X is the circumcircle. Hence our answer is
Solution 5 (basically Solution 1 but without coordinates)
Since Solution 1 has already proven that the circumcenter of coincides with , we'll go from there. Note that the radius of the circumcenter of any given triangle is , and since and , it can be easily seen that and therefore our answer is
See also
2011 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.