Difference between revisions of "2003 AMC 12A Problems/Problem 23"

(Solution 2)
(Solution 1)
Line 8: Line 8:
  
 
We want to find the number of perfect square factors in the product of all the factorials of numbers from <math>1 - 9</math>. We can write this out and take out the factorials, and then find a prime factorization of the entire product. We can also find this prime factorization by finding the number of times each factor is repeated in each factorial. This comes out to be equal to <math>2^{30}</math> <math>*</math> <math>3^{13}</math> <math>*</math> <math>5^5</math> <math>*</math> <math>7^3</math>. To find the amount of perfect square factors, we realize that each exponent in the prime factorization must be even: <math>2^{15}</math> <math>*</math> <math>3^{6}</math> <math>*</math> <math>5^2</math> <math>*</math> <math>7^1</math>. To find the total number of possibilities, we add <math>1</math> to each exponent and multiply them all together. This gives us <math>16*7*3*2</math> <math>=</math> <math>672</math> <math>\Rightarrow\boxed{\mathrm{(B)}}</math>.
 
We want to find the number of perfect square factors in the product of all the factorials of numbers from <math>1 - 9</math>. We can write this out and take out the factorials, and then find a prime factorization of the entire product. We can also find this prime factorization by finding the number of times each factor is repeated in each factorial. This comes out to be equal to <math>2^{30}</math> <math>*</math> <math>3^{13}</math> <math>*</math> <math>5^5</math> <math>*</math> <math>7^3</math>. To find the amount of perfect square factors, we realize that each exponent in the prime factorization must be even: <math>2^{15}</math> <math>*</math> <math>3^{6}</math> <math>*</math> <math>5^2</math> <math>*</math> <math>7^1</math>. To find the total number of possibilities, we add <math>1</math> to each exponent and multiply them all together. This gives us <math>16*7*3*2</math> <math>=</math> <math>672</math> <math>\Rightarrow\boxed{\mathrm{(B)}}</math>.
 
  
 
==Solution 2==
 
==Solution 2==

Revision as of 23:57, 8 August 2019

Problem

How many perfect squares are divisors of the product $1! \cdot 2! \cdot 3! \cdot \hdots \cdot 9!$?

$\textbf{(A)}\ 504\qquad\textbf{(B)}\ 672\qquad\textbf{(C)}\ 864\qquad\textbf{(D)}\ 936\qquad\textbf{(E)}\ 1008$

Solution 1

We want to find the number of perfect square factors in the product of all the factorials of numbers from $1 - 9$. We can write this out and take out the factorials, and then find a prime factorization of the entire product. We can also find this prime factorization by finding the number of times each factor is repeated in each factorial. This comes out to be equal to $2^{30}$ $*$ $3^{13}$ $*$ $5^5$ $*$ $7^3$. To find the amount of perfect square factors, we realize that each exponent in the prime factorization must be even: $2^{15}$ $*$ $3^{6}$ $*$ $5^2$ $*$ $7^1$. To find the total number of possibilities, we add $1$ to each exponent and multiply them all together. This gives us $16*7*3*2$ $=$ $672$ $\Rightarrow\boxed{\mathrm{(B)}}$.

Solution 2

We can easily find that factorials upto 9 in product lead to prime factorization $2^{30}$ $*$ $3^{13}$ $*$ $5^5$ $*$ $7^3$ So numbe of pairs possible = { $2^{0}$ $,$ $2^{2}$ $,$ ... $2^{30}$ }{ $3^{0}$ $,$ $3^{2}$ $,$ ... $3^{12}$ }{ $5^{0}$ $,$ $5^{2}$ $,$ ... $5^{4}$ }{ $7^{0}$ $,$ $7^{2}$ }

Which leads to resulting number of pairs = $16$ $*$ $7$ $*$ $3$ $*$ $2$ = 672

See Also

2003 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png