Difference between revisions of "1990 AIME Problems/Problem 2"

(Solution 3)
(Undo revision 109614 by Nafer (talk))
(Tag: Undo)
Line 27: Line 27:
 
<cmath>36 = x^2.</cmath>
 
<cmath>36 = x^2.</cmath>
 
Since <math>\left(52+6\sqrt{43}\right)^{\frac{1}{2}} > \left(52-6\sqrt{43}\right)^{\frac{1}{2}}</math>, we know that <math>x=6</math>, so our final answer is <math>(6)(138) = \boxed{828}</math>.
 
Since <math>\left(52+6\sqrt{43}\right)^{\frac{1}{2}} > \left(52-6\sqrt{43}\right)^{\frac{1}{2}}</math>, we know that <math>x=6</math>, so our final answer is <math>(6)(138) = \boxed{828}</math>.
 
 
== Solution 4 ==
 
  
 
== See also ==
 
== See also ==

Revision as of 16:26, 2 September 2019

Problem

Find the value of $(52+6\sqrt{43})^{3/2}-(52-6\sqrt{43})^{3/2}$.

Solution 1

Suppose that $52+6\sqrt{43}$ is in the form of $(a + b\sqrt{43})^2$. FOILing yields that $52 + 6\sqrt{43} = a^2 + 43b^2 + 2ab\sqrt{43}$. This implies that $a$ and $b$ equal one of $\pm1, \pm3$. The possible sets are $(3,1)$ and $(-3,-1)$; the latter can be discarded since the square root must be positive. This means that $52 + 6\sqrt{43} = (\sqrt{43} + 3)^2$. Repeating this for $52-6\sqrt{43}$, the only feasible possibility is $(\sqrt{43} - 3)^2$.

Rewriting, we get $(\sqrt{43} + 3)^3 - (\sqrt{43} - 3)^3$. Using the difference of cubes, we get that $[\sqrt{43} + 3\ - \sqrt{43} + 3]\ [(43 + 6\sqrt{43} + 9) + (43 - 9) + (43 - 6\sqrt{43} + 9)]$ $= (6)(3 \cdot 43 + 9) = \boxed{828}$.

Solution 2

The $3/2$ power is quite irritating to work with so we look for a way to eliminate that. Notice that squaring the expression will accomplish that. Let $S$ be the sum of the given expression. \[S^2= ((52+6\sqrt{43})^{3/2}-(52-6\sqrt{43})^{3/2})^2\] \[S^2 = (52+6\sqrt{43})^{3} + (52-6\sqrt{43})^{3} - 2((52+6\sqrt{43})(52-6\sqrt{43}))^{3/2}\] After doing the arithmetic (note that the first two terms will have some cancellation and that the last term will simplify quickly using difference of squares), we arrive at $S^2 = 685584$ which gives $S=\boxed{828}$.

Solution 3

Factor as a difference of cubes. \[\left[\left(52+6\sqrt{43}\right)^{\frac{1}{2}}-\left(52-6\sqrt{43}\right)^{\frac{1}{2}}\right]\left[\left(\left(\left(52+6\sqrt{43}\right)^{\frac{1}{2}}\right)^2+\left(52+6\sqrt{43}\right)^{\frac{1}{2}}\left(52-6\sqrt{43}\right)^{\frac{1}{2}}+\left(\left(52-6\sqrt{43}\right)^{\frac{1}{2}}\right)^2\right)\right] =\] \[\left[\left(52+6\sqrt{43}\right)^{\frac{1}{2}}-\left(52-6\sqrt{43}\right)^{\frac{1}{2}}\right]\left[104+\left(52^2-\left(36\right)\left(43\right)\right)^{\frac{1}{2}}\right] =\] \[\left[\left(52+6\sqrt{43}\right)^{\frac{1}{2}}-\left(52-6\sqrt{43}\right)^{\frac{1}{2}}\right]\left[104+34\right].\] We can simplify the left factor as follows. \[\left(52+6\sqrt{43}\right)^{\frac{1}{2}}-\left(52-6\sqrt{43}\right)^{\frac{1}{2}} = x\] \[104-2\left(52+6\sqrt{43}\right)^{\frac{1}{2}}\left(52-6\sqrt{43}\right)^{\frac{1}{2}} = x^2\] \[104-68 = x^2\] \[36 = x^2.\] Since $\left(52+6\sqrt{43}\right)^{\frac{1}{2}} > \left(52-6\sqrt{43}\right)^{\frac{1}{2}}$, we know that $x=6$, so our final answer is $(6)(138) = \boxed{828}$.

See also

1990 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png