Difference between revisions of "2001 AIME I Problems/Problem 7"

m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Triangle <math>ABC</math> has <math>AB=21</math>, <math>AC=22</math> and <math>BC=20</math>. Points <math>D</math> and <math>E</math> are located on <math>\overline{AB}</math> and <math>\overline{AC}</math>, respectively, such that <math>\overline{DE}</math> is parallel to <math>\overline{BC}</math> and contains the center of the inscribed circle of triangle <math>ABC</math>. Then <math>DE=m/n</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
  
 
== Solution ==
 
== Solution ==
 +
{{solution}}
  
 
== See also ==
 
== See also ==
* [[2001 AIME I Problems/Problem 6 | Previous Problem]]
+
{{AIME box|year=2001|n=I|num-b=6|num-a=8}}
 
 
* [[2001 AIME I Problems/Problem 8 | Next Problem]]
 
 
 
* [[2001 AIME I Problems]]
 

Revision as of 23:22, 19 November 2007

Problem

Triangle $ABC$ has $AB=21$, $AC=22$ and $BC=20$. Points $D$ and $E$ are located on $\overline{AB}$ and $\overline{AC}$, respectively, such that $\overline{DE}$ is parallel to $\overline{BC}$ and contains the center of the inscribed circle of triangle $ABC$. Then $DE=m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2001 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions