Difference between revisions of "2001 AIME I Problems/Problem 13"
I_like_pie (talk | contribs) |
m |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | In a certain circle, the chord of a <math>d</math>-degree arc is 22 centimeters long, and the chord of a <math>2d</math>-degree arc is 20 centimeters longer than the chord of a <math>3d</math>-degree arc, where <math>d < 120.</math> The length of the chord of a <math>3d</math>-degree arc is <math>- m + \sqrt {n}</math> centimeters, where <math>m</math> and <math>n</math> are positive integers. Find <math>m + n.</math> | ||
== Solution == | == Solution == | ||
+ | {{solution}} | ||
== See also == | == See also == | ||
− | + | {{AIME box|year=2001|n=I|num-b=12|num-a=14}} | |
− | |||
− | |||
− | |||
− |
Revision as of 23:25, 19 November 2007
Problem
In a certain circle, the chord of a -degree arc is 22 centimeters long, and the chord of a -degree arc is 20 centimeters longer than the chord of a -degree arc, where The length of the chord of a -degree arc is centimeters, where and are positive integers. Find
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |