Difference between revisions of "2001 AIME I Problems/Problem 13"

m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
In a certain circle, the chord of a <math>d</math>-degree arc is 22 centimeters long, and the chord of a <math>2d</math>-degree arc is 20 centimeters longer than the chord of a <math>3d</math>-degree arc, where <math>d < 120.</math>  The length of the chord of a <math>3d</math>-degree arc is <math>- m + \sqrt {n}</math> centimeters, where <math>m</math> and <math>n</math> are positive integers.  Find <math>m + n.</math>
  
 
== Solution ==
 
== Solution ==
 +
{{solution}}
  
 
== See also ==
 
== See also ==
* [[2001 AIME I Problems/Problem 12 | Previous Problem]]
+
{{AIME box|year=2001|n=I|num-b=12|num-a=14}}
 
 
* [[2001 AIME I Problems/Problem 14 | Next Problem]]
 
 
 
* [[2001 AIME I Problems]]
 

Revision as of 23:25, 19 November 2007

Problem

In a certain circle, the chord of a $d$-degree arc is 22 centimeters long, and the chord of a $2d$-degree arc is 20 centimeters longer than the chord of a $3d$-degree arc, where $d < 120.$ The length of the chord of a $3d$-degree arc is $- m + \sqrt {n}$ centimeters, where $m$ and $n$ are positive integers. Find $m + n.$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2001 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions