Difference between revisions of "2020 AMC 10A Problems/Problem 18"

(Solution)
(Solution)
Line 8: Line 8:
  
 
-Midnight
 
-Midnight
 +
 +
== Solution ==
 +
Consider parity. We need exactly one term to be odd, one term to be even. Because of symmetry, we can set <math>ad</math> to be odd and <math>bc</math> to be even, then multiply by <math>2.</math> If <math>ad</math> is odd, both <math>a</math> and <math>d</math> must be odd, therefore there are <math>2\cdot2=4</math> possibilities for <math>ad.</math> Consider <math>bc.</math> Let us say that <math>b</math> is even. Then there are <math>2\cdot4=8</math> possibilities for <math>bc.</math> However, <math>b</math> can be odd, in which case we have <math>2\cdot2=4</math> more possibilities for <math>bc.</math> Thus there are <math>12</math> ways for us to choose <math>bc</math> and <math>4</math> ways for us to choose <math>ad.</math> Therefore, also considering symmetry, we have <math>2*4*12=96</math> total values of <math>ad-bc.</math> <math>(C)</math>
  
 
==Video Solution==
 
==Video Solution==

Revision as of 22:53, 31 January 2020

Problem

Let $(a,b,c,d)$ be an ordered quadruple of not necessarily distinct integers, each one of them in the set ${0,1,2,3}.$ For how many such quadruples is it true that $a\cdot d-b\cdot c$ is odd? (For example, $(0,3,1,1)$ is one such quadruple, because $0\cdot 1-3\cdot 1 = -3$ is odd.)

$\textbf{(A) } 48 \qquad \textbf{(B) } 64 \qquad \textbf{(C) } 96 \qquad \textbf{(D) } 128 \qquad \textbf{(E) } 192$

Solution

In order for $a\cdot d-b\cdot c$ to be odd, consider parity. We must have (even)-(odd) or (odd)-(even). There are $2 \cdot 4 = 8$ ways to pick numbers to obtain a even product. There are $2 \cdot 2 = 4$ ways to obtain an odd product. Therefore, the total amount of ways to make $a\cdot d-b\cdot c$ odd is $2 \cdot (8 \cdot 4) = \boxed{\text{B}, 64}$.

-Midnight

Solution

Consider parity. We need exactly one term to be odd, one term to be even. Because of symmetry, we can set $ad$ to be odd and $bc$ to be even, then multiply by $2.$ If $ad$ is odd, both $a$ and $d$ must be odd, therefore there are $2\cdot2=4$ possibilities for $ad.$ Consider $bc.$ Let us say that $b$ is even. Then there are $2\cdot4=8$ possibilities for $bc.$ However, $b$ can be odd, in which case we have $2\cdot2=4$ more possibilities for $bc.$ Thus there are $12$ ways for us to choose $bc$ and $4$ ways for us to choose $ad.$ Therefore, also considering symmetry, we have $2*4*12=96$ total values of $ad-bc.$ $(C)$

Video Solution

https://youtu.be/RKlG6oZq9so

~IceMatrix

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png