Difference between revisions of "2009 AIME I Problems/Problem 5"
m |
|||
Line 2: | Line 2: | ||
Triangle <math>ABC</math> has <math>AC = 450</math> and <math>BC = 300</math>. Points <math>K</math> and <math>L</math> are located on <math>\overline{AC}</math> and <math>\overline{AB}</math> respectively so that <math>AK = CK</math>, and <math>\overline{CL}</math> is the angle bisector of angle <math>C</math>. Let <math>P</math> be the point of intersection of <math>\overline{BK}</math> and <math>\overline{CL}</math>, and let <math>M</math> be the point on line <math>BK</math> for which <math>K</math> is the midpoint of <math>\overline{PM}</math>. If <math>AM = 180</math>, find <math>LP</math>. | Triangle <math>ABC</math> has <math>AC = 450</math> and <math>BC = 300</math>. Points <math>K</math> and <math>L</math> are located on <math>\overline{AC}</math> and <math>\overline{AB}</math> respectively so that <math>AK = CK</math>, and <math>\overline{CL}</math> is the angle bisector of angle <math>C</math>. Let <math>P</math> be the point of intersection of <math>\overline{BK}</math> and <math>\overline{CL}</math>, and let <math>M</math> be the point on line <math>BK</math> for which <math>K</math> is the midpoint of <math>\overline{PM}</math>. If <math>AM = 180</math>, find <math>LP</math>. | ||
+ | |||
+ | ==Diagram== | ||
+ | <center><asy> | ||
+ | import markers; | ||
+ | defaultpen(fontsize(8)); | ||
+ | size(300); | ||
+ | pair A=(0,0), B=(30*sqrt(331),0), C, K, L, M, P; | ||
+ | C = intersectionpoints(Circle(A,450), Circle(B,300))[0]; | ||
+ | K = midpoint(A--C); | ||
+ | L = (3*B+2*A)/5; | ||
+ | P = extension(B,K,C,L); | ||
+ | M = 2*K-P; | ||
+ | draw(A--B--C--cycle); | ||
+ | draw(C--L);draw(B--M--A); | ||
+ | markangle(n=1,radius=15,A,C,L,marker(markinterval(stickframe(n=1),true))); | ||
+ | markangle(n=1,radius=15,L,C,B,marker(markinterval(stickframe(n=1),true))); | ||
+ | dot(A^^B^^C^^K^^L^^M^^P); | ||
+ | label("$A$",A,(-1,-1));label("$B$",B,(1,-1));label("$C$",C,(1,1)); | ||
+ | label("$K$",K,(0,2));label("$L$",L,(0,-2));label("$M$",M,(-1,1)); | ||
+ | label("$P$",P,(1,1)); | ||
+ | label("$180$",(A+M)/2,(-1,0));label("$180$",(P+C)/2,(-1,0));label("$225$",(A+K)/2,(0,2));label("$225$",(K+C)/2,(0,2)); | ||
+ | label("$300$",(B+C)/2,(1,1)); | ||
+ | </asy></center> | ||
== Solution 1== | == Solution 1== |
Revision as of 18:57, 15 May 2020
Problem
Triangle has and . Points and are located on and respectively so that , and is the angle bisector of angle . Let be the point of intersection of and , and let be the point on line for which is the midpoint of . If , find .
Diagram
Solution 1
Since is the midpoint of and , quadrilateral is a parallelogram, which implies and is similar to
Thus,
Now let's apply the angle bisector theorem.
Solution 2
Using the diagram above, we can solve this problem by using mass points. By angle bisector theorem: So, we can weight as and as and as . Since is the midpoint of and , the weight of is equal to the weight of , which equals . Also, since the weight of is and is , we can weight as .
By the definition of mass points, By vertical angles, angle angle . Also, it is given that and .
By the SAS congruence, = . So, = = . Since ,
Video Solution
~IceMatrix
See also
2009 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.