Difference between revisions of "1990 AIME Problems/Problem 5"

m
Line 1: Line 1:
{{empty}}
 
 
== Problem ==
 
== Problem ==
 +
Let <math>n^{}_{}</math> be the smallest positive integer that is a multiple of <math>75_{}^{}</math> and has exactly <math>75_{}^{}</math> positive integral divisors, including <math>1_{}^{}</math> and itself. Find <math>n/75^{}_{}</math>.
  
 
== Solution ==
 
== Solution ==
 
{{solution}}
 
{{solution}}
 +
 
== See also ==
 
== See also ==
* [[1990 AIME Problems]]
+
{{AIME box|year=1990|num-b=4|num-a=6}}

Revision as of 00:23, 2 March 2007

Problem

Let $n^{}_{}$ be the smallest positive integer that is a multiple of $75_{}^{}$ and has exactly $75_{}^{}$ positive integral divisors, including $1_{}^{}$ and itself. Find $n/75^{}_{}$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

1990 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions