Difference between revisions of "1990 AIME Problems/Problem 13"
m |
|||
Line 1: | Line 1: | ||
− | |||
== Problem == | == Problem == | ||
+ | Let <math>T = \{9^k : k ~ \mbox{is an integer}, 0 \le k \le 4000\}</math>. Given that <math>9^{4000}_{}</math> has 3817 digits and that its first (leftmost) digit is 9, how many elements of <math>T_{}^{}</math> have 9 as their leftmost digit? | ||
== Solution == | == Solution == | ||
{{solution}} | {{solution}} | ||
+ | |||
== See also == | == See also == | ||
− | + | {{AIME box|year=1990|num-b=12|num-a=14}} |
Revision as of 00:38, 2 March 2007
Problem
Let . Given that has 3817 digits and that its first (leftmost) digit is 9, how many elements of have 9 as their leftmost digit?
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
1990 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |