Difference between revisions of "2010 AMC 12B Problems/Problem 6"
Sakshamsethi (talk | contribs) (→Problem 6) |
|||
Line 2: | Line 2: | ||
== Problem 6 == | == Problem 6 == | ||
− | At the beginning of the school year, <math>50\%</math> of all students in Mr. | + | At the beginning of the school year, <math>50\%</math> of all students in Mr. Well's class answered "Yes" to the question "Do you love math", and <math>50\%</math> answered "No." At the end of the school year, <math>70\%</math> answered "Yes" and <math>30\%</math> answered "No." Altogether, <math>x\%</math> of the students gave a different answer at the beginning and end of the school year. What is the difference between the maximum and the minimum possible values of <math>x</math>? |
<math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 20 \qquad \textbf{(C)}\ 40 \qquad \textbf{(D)}\ 60 \qquad \textbf{(E)}\ 80</math> | <math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 20 \qquad \textbf{(C)}\ 40 \qquad \textbf{(D)}\ 60 \qquad \textbf{(E)}\ 80</math> |
Revision as of 09:49, 10 July 2020
- The following problem is from both the 2010 AMC 12B #6 and 2010 AMC 10B #12, so both problems redirect to this page.
Problem 6
At the beginning of the school year, of all students in Mr. Well's class answered "Yes" to the question "Do you love math", and answered "No." At the end of the school year, answered "Yes" and answered "No." Altogether, of the students gave a different answer at the beginning and end of the school year. What is the difference between the maximum and the minimum possible values of ?
Solution
Clearly, the minimum possible value would be . The maximum possible value would be . The difference is .
See also
2010 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 5 |
Followed by Problem 7 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.