Difference between revisions of "2010 AMC 12B Problems/Problem 21"
(Redirected page to 2010 AMC 10B Problems/Problem 25) (Tag: New redirect) |
(Tags: Removed redirect, Undo) |
||
Line 1: | Line 1: | ||
− | + | == Problem 21 == | |
+ | Let <math>a > 0</math>, and let <math>P(x)</math> be a polynomial with integer coefficients such that | ||
+ | |||
+ | <center> | ||
+ | <math>P(1) = P(3) = P(5) = P(7) = a</math>, and<br/> | ||
+ | <math>P(2) = P(4) = P(6) = P(8) = -a</math>. | ||
+ | </center> | ||
+ | |||
+ | What is the smallest possible value of <math>a</math>? | ||
+ | |||
+ | <math>\textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!</math> | ||
+ | |||
+ | == Solution 1 == | ||
+ | There must be some polynomial <math>Q(x)</math> such that <math>P(x)-a=(x-1)(x-3)(x-5)(x-7)Q(x)</math> | ||
+ | |||
+ | Then, plugging in values of <math>2,4,6,8,</math> we get | ||
+ | |||
+ | <cmath>P(2)-a=(2-1)(2-3)(2-5)(2-7)Q(2) = -15Q(2) = -2a</cmath> | ||
+ | <cmath>P(4)-a=(4-1)(4-3)(4-5)(4-7)Q(4) = 9Q(4) = -2a</cmath> | ||
+ | <cmath>P(6)-a=(6-1)(6-3)(6-5)(6-7)Q(6) = -15Q(6) = -2a</cmath> | ||
+ | <cmath>P(8)-a=(8-1)(8-3)(8-5)(8-7)Q(8) = 105Q(8) = -2a</cmath> | ||
+ | <cmath>-2a=-15Q(2)=9Q(4)=-15Q(6)=105Q(8).</cmath> | ||
+ | Thus, <math>a</math> must be a multiple of <math>\text{lcm}(15,9,15,105)=315</math>. | ||
+ | |||
+ | Now we show that there exists <math>Q(x)</math> such that <math>a=315.</math> We have | ||
+ | <cmath>Q(2)=42, Q(4)=-70, Q(6)=42, Q(8)=-6</cmath> | ||
+ | Thus, <math>Q(x)=R(x)(x-2)(x-6)+42</math> for some <math>R(x).</math> From here it is clear that <math>Q(x)</math> exists, since we can take <math>R(x)=-8x+60.</math> | ||
+ | |||
+ | Therefore, our answer is <math> \boxed{\textbf{(B)}\ 315.} </math> | ||
+ | |||
+ | == Solution 2 (Calculus)== | ||
+ | The evenly-spaced data suggests using [[discrete derivative|discrete derivatives]] to tackle this problem. First, note that any polynomial of degree <math>n</math> | ||
+ | |||
+ | <center><math>P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n</math></center> | ||
+ | |||
+ | can also be written as | ||
+ | |||
+ | <center><math>P(x) = b_0 + b_1 (x-1) + b_2 (x-1)(x-2) + \ldots + b_n (x-1)(x-2) \cdots (x-n)</math>.</center> | ||
+ | |||
+ | Moreover, the coefficients <math>a_i</math> are integers for <math>i=0, 1, 2, \ldots n</math> iff the coefficients <math>b_i</math> are integers for <math>i=0, 1, 2, \ldots n</math>. This latter form is convenient for calculating discrete derivatives of <math>P(x)</math>. | ||
+ | |||
+ | The discrete derivative of a function <math>f(x)</math> is the related function <math>\Delta f(x)</math> defined as | ||
+ | |||
+ | <center><math>\Delta f(x) = f(x+1) - f(x)</math>.</center> | ||
+ | |||
+ | With this definition, it's easy to see that for any positive integer <math>k</math> we have | ||
+ | |||
+ | <center><math>\Delta [(x-1)(x-2)\cdots(x-k)] = k(x-1)(x-2)\cdots(x-[k-1])</math>.</center> | ||
+ | |||
+ | This in turn allows us to use successive discrete derivatives evaluated at <math>x=1</math> to calculate all of the coefficients <math>b_i</math> using | ||
+ | |||
+ | <center><math>P(1)=b_0</math>, <math>\Delta P(1) = b_1</math>, <math>\Delta^2 P(1) = 2 b_2</math>, <math>\ldots</math>, <math>\Delta^7 P(1) = 7! b_7</math>.</center> | ||
+ | |||
+ | We can also calculate the following table of discrete derivatives based on the data points given in the problem statement: | ||
+ | |||
+ | <center> | ||
+ | <table frame='box' rules='all' cellpadding='3'> | ||
+ | <tr><th /><th colspan='8'><math>x</math></th></tr> | ||
+ | |||
+ | <tr><td align='right'></td><td align='center'><math>1</math></td><td align='center'><math>2</math></td><td align='center'><math>3</math></td><td align='center'><math>4</math></td><td align='center'><math>5</math></td><td align='center'><math>6</math></td><td align='center'><math>7</math></td><td align='center'><math>8</math></td></tr> | ||
+ | |||
+ | <tr><td align='right'><math>P(x)</math></td><td align='right'><math>a</math></td><td align='right'><math>-a</math></td><td align='right'><math>a</math></td><td align='right'><math>-a</math></td><td align='right'><math>a</math></td><td align='right'><math>-a</math></td><td align='right'><math>a</math></td><td align='right'><math>-a</math></td></tr> | ||
+ | |||
+ | <tr><td align='right'><math>\Delta P(x)</math></td><td align='right'><math>-2a</math></td><td align='right'><math>2a</math></td><td align='right'><math>-2a</math></td><td align='right'><math>2a</math></td><td align='right'><math>-2a</math></td><td align='right'><math>2a</math></td><td align='right'><math>-2a</math></td><td /></tr> | ||
+ | |||
+ | <tr><td align='right'><math>\Delta^2 P(x)</math></td><td align='right'><math>4a</math></td><td align='right'><math>-4a</math></td><td align='right'><math>4a</math></td><td align='right'><math>-4a</math></td><td align='right'><math>4a</math></td><td align='right'><math>-4a</math></td><td /><td /></tr> | ||
+ | |||
+ | <tr><td colspan='9' align='center'><math>\vdots</math></td></tr> | ||
+ | |||
+ | <tr><td align='right'><math>\Delta^7 P(x)</math></td><td align='right'><math>-2^7 a</math></td><td /><td /><td /><td /><td /><td /><td /></tr> | ||
+ | </table> | ||
+ | </center> | ||
+ | |||
+ | Thus we can read down the column for <math>x=1</math> to find that <math>k! b_k = (-2)^k a</math> for <math>k = 0, 1, \ldots, 7</math>. Interestingly, even if we choose <math>P(x)</math> to have degree greater than <math>7</math>, the <math>8</math> coefficients of lowest order always satisfy these conditions. Moreover, it's straightforward to show that the <math>P(x)</math> of degree <math>7</math> with <math>b_k</math> satisfying these conditions will fit the data given in the problem statement. Thus, to find minimal necessary and sufficient conditions on the value of <math>a</math>, we need only consider these <math>8</math> equations. As a result, <math>P(x)</math> with integer coefficients fitting the given data exists iff <math>k!</math> divides <math>2^k a</math> for <math>k = 0, 1, \ldots, 7</math>. In other words, it's necessary and sufficient that | ||
+ | |||
+ | <center> | ||
+ | <math>0! | a</math>, | ||
+ | |||
+ | <math>1! | 2a</math>, | ||
+ | |||
+ | <math>2! | 2^2 a</math>, | ||
+ | |||
+ | <math>3! | 2^3 a</math>, | ||
+ | |||
+ | <math>4! | 2^4 a</math>, | ||
+ | |||
+ | <math>5! | 2^5 a</math>, | ||
+ | |||
+ | <math>6! | 2^6 a</math>, and | ||
+ | |||
+ | <math>7! | 2^7 a</math>. | ||
+ | </center> | ||
+ | |||
+ | The last condition holds iff <math>7 \cdot 3 \cdot 5 \cdot 3 = 315</math> divides evenly into <math>a</math>. Since such <math>a</math> will also satisfy the first <math>7</math> conditions, our answer is <math> \boxed{\textbf{(B)}\ 315} </math>. | ||
+ | |||
+ | == See also == | ||
+ | {{AMC12 box|year=2010|num-b=20|num-a=22|ab=B}} | ||
+ | |||
+ | [[Category:Intermediate Algebra Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 14:16, 17 June 2020
Problem 21
Let , and let be a polynomial with integer coefficients such that
, and
.
What is the smallest possible value of ?
Solution 1
There must be some polynomial such that
Then, plugging in values of we get
Thus, must be a multiple of .
Now we show that there exists such that We have Thus, for some From here it is clear that exists, since we can take
Therefore, our answer is
Solution 2 (Calculus)
The evenly-spaced data suggests using discrete derivatives to tackle this problem. First, note that any polynomial of degree
can also be written as
Moreover, the coefficients are integers for iff the coefficients are integers for . This latter form is convenient for calculating discrete derivatives of .
The discrete derivative of a function is the related function defined as
With this definition, it's easy to see that for any positive integer we have
This in turn allows us to use successive discrete derivatives evaluated at to calculate all of the coefficients using
We can also calculate the following table of discrete derivatives based on the data points given in the problem statement:
Thus we can read down the column for to find that for . Interestingly, even if we choose to have degree greater than , the coefficients of lowest order always satisfy these conditions. Moreover, it's straightforward to show that the of degree with satisfying these conditions will fit the data given in the problem statement. Thus, to find minimal necessary and sufficient conditions on the value of , we need only consider these equations. As a result, with integer coefficients fitting the given data exists iff divides for . In other words, it's necessary and sufficient that
,
,
,
,
,
,
, and
.
The last condition holds iff divides evenly into . Since such will also satisfy the first conditions, our answer is .
See also
2010 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.