Difference between revisions of "2020 AIME II Problems/Problem 15"
Topnotchmath (talk | contribs) m |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
+ | Let <math>\triangle ABC</math> be an acute scalene triangle with circumcircle <math>\omega</math>. The tangents to <math>\omega</math> at <math>B</math> and <math>C</math> intersect at <math>T</math>. Let <math>X</math> and <math>Y</math> be the projections of <math>T</math> onto lines <math>AB</math> and <math>AC</math>, respectively. Suppose <math>BT = CT = 16</math>, <math>BC = 22</math>, and <math>TX^2 + TY^2 + XY^2 = 1143</math>. Find <math>XY^2</math>. | ||
+ | |||
==See Also== | ==See Also== | ||
{{AIME box|year=2020|n=II|num-b=14|after=Last Problem}} | {{AIME box|year=2020|n=II|num-b=14|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 23:34, 7 June 2020
Problem
Let be an acute scalene triangle with circumcircle . The tangents to at and intersect at . Let and be the projections of onto lines and , respectively. Suppose , , and . Find .
See Also
2020 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.