Difference between revisions of "2005 AIME II Problems/Problem 11"
Line 15: | Line 15: | ||
==Solution 2== | ==Solution 2== | ||
− | Plugging in <math>k = m-1</math> to the given relation, we get <math>0 = a_{m-2} - \frac {3}{a_{m-1}} \implies{a_{m-2}a_{m-1} = 3}</math>. Inspecting the value of <math>a_{k} | + | Plugging in <math>k = m-1</math> to the given relation, we get <math>0 = a_{m-2} - \frac {3}{a_{m-1}} \implies{a_{m-2}a_{m-1} = 3}</math>. Inspecting the value of <math>a_{k}a_{k+1}</math> for small values of <math>k</math>, we see that <math>a_{k}a_{k+1} = 37\cdot 72 - 3k</math>. Setting the RHS of this equation equal to <math>3</math>, we find that <math>m</math> must be <math> \boxed{889}</math>. |
~ anellipticcurveoverq | ~ anellipticcurveoverq |
Revision as of 10:49, 18 June 2020
Contents
Problem
Let be a positive integer, and let be a sequence of reals such that and for Find
Solution 1
For , we have
.
Thus the product is a monovariant: it decreases by 3 each time increases by 1. For we have , so when , will be zero for the first time, which implies that , our answer.
Solution 2
Plugging in to the given relation, we get . Inspecting the value of for small values of , we see that . Setting the RHS of this equation equal to , we find that must be .
~ anellipticcurveoverq
See also
2005 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.