Difference between revisions of "2006 AMC 12A Problems/Problem 13"

m (See also: typo)
(See also)
Line 15: Line 15:
  
 
{{AMC12 box|year=2006|ab=A|num-b=12|num-a=14}}
 
{{AMC12 box|year=2006|ab=A|num-b=12|num-a=14}}
 +
{{MAA Notice}}
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]

Revision as of 16:52, 3 July 2013

Problem

2006 AMC 12A Problem 13.gif

The vertices of a $3-4-5$ right triangle are the centers of three mutually externally tangent circles, as shown. What is the sum of the areas of the three circles?

$\mathrm{(A) \ } 12\pi\qquad \mathrm{(B) \ } \frac{25\pi}{2}\qquad \mathrm{(C) \ } 13\pi\qquad \mathrm{(D) \ } \frac{27\pi}{2}\qquad\mathrm{(E) \ }  14\pi$

Solution

Let the radius of the smallest circle be $a$. We find that the radius of the largest circle is $4-a$ and the radius of the second largest circle is $3-a$. Thus, $4-a+3-a=5\iff a=1$. The radii of the other circles are $3$ and $2$. The sum of their areas is $\pi+9\pi+4\pi=14\pi\iff\mathrm{(E)}$

See also

2006 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png