Difference between revisions of "2006 AMC 12A Problems/Problem 2"

m (See also: box)
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
 
Define <math>x\otimes y=x^3-y</math>. What is <math>h\otimes (h\otimes h)</math>?
 
Define <math>x\otimes y=x^3-y</math>. What is <math>h\otimes (h\otimes h)</math>?
  
<math> \mathrm{(A) \ } -h\qquad \mathrm{(B) \ } 0\qquad \mathrm{(C) \ } h\qquad \mathrm{(D) \ } 2h</math>
+
<math>\mathrm{(A)}\ -h\qquad\mathrm{(B)}\ 0\qquad\mathrm{(C)}\ h\qquad\mathrm{(D)}\ 2h \mathrm{(E)}\  h^3</math>
 
 
<math>\mathrm{(E) \ } h^3</math>
 
  
 
== Solution ==
 
== Solution ==
 
+
By the definition of <math>\otimes</math>, we have <math>h\otimes h=h^{3}-h</math>. Then <math>h\otimes (h\otimes h)=h\otimes (h^{3}-h)=h^{3}-(h^{3}-h)=h</math>. The answer is <math>\mathrm{(C)}</math>.
By the definition of <math>\otimes</math>, we have <math>h\otimes h=h^{3}-h</math>. Then <math>h\otimes (h\otimes h)=h\otimes (h^{3}-h)=h^{3}-(h^{3}-h)=h</math>. The answer is C.
 
  
 
== See also ==
 
== See also ==
* [[2006 AMC 12A Problems]]
 
 
 
{{AMC12 box|year=2006|ab=A|num-b=1|num-a=3}}
 
{{AMC12 box|year=2006|ab=A|num-b=1|num-a=3}}
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 22:35, 27 April 2008

Problem

Define $x\otimes y=x^3-y$. What is $h\otimes (h\otimes h)$?

$\mathrm{(A)}\ -h\qquad\mathrm{(B)}\ 0\qquad\mathrm{(C)}\ h\qquad\mathrm{(D)}\ 2h \mathrm{(E)}\  h^3$

Solution

By the definition of $\otimes$, we have $h\otimes h=h^{3}-h$. Then $h\otimes (h\otimes h)=h\otimes (h^{3}-h)=h^{3}-(h^{3}-h)=h$. The answer is $\mathrm{(C)}$.

See also

2006 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions