Difference between revisions of "2003 AMC 12A Problems/Problem 24"

Line 25: Line 25:
  
 
The Link: https://www.youtube.com/watch?v=InF2phZZi2A&t=1s
 
The Link: https://www.youtube.com/watch?v=InF2phZZi2A&t=1s
 +
-MistyMathMusic
  
 
== See Also ==
 
== See Also ==
 
{{AMC12 box|year=2003|ab=A|num-b=23|num-a=25}}
 
{{AMC12 box|year=2003|ab=A|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 22:36, 18 August 2020

Problem

If $a\geq b > 1,$ what is the largest possible value of $\log_{a}(a/b) + \log_{b}(b/a)?$

$\mathrm{(A)}\ -2      \qquad \mathrm{(B)}\ 0     \qquad \mathrm{(C)}\ 2      \qquad \mathrm{(D)}\ 3      \qquad \mathrm{(E)}\ 4$

Solution

Using logarithmic rules, we see that

\[\log_{a}a-\log_{a}b+\log_{b}b-\log_{b}a = 2-(\log_{a}b+\log_{b}a)\] \[=2-(\log_{a}b+\frac {1}{\log_{a}b})\]

Since $a$ and $b$ are both positive, using AM-GM gives that the term in parentheses must be at least $2$, so the largest possible values is $2-2=0 \Rightarrow \boxed{\textbf{B}}.$

Note that the maximum occurs when $a=b$.

Video Solution

The Link: https://www.youtube.com/watch?v=InF2phZZi2A&t=1s -MistyMathMusic

See Also

2003 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png