Difference between revisions of "2020 AMC 8 Problems/Problem 22"
(→Problem 22) |
|||
Line 2: | Line 2: | ||
When a positive integer <math>N</math> is fed into a machine, the output is a number calculated according to the rule shown below. | When a positive integer <math>N</math> is fed into a machine, the output is a number calculated according to the rule shown below. | ||
− | + | [asy] size(300); defaultpen(linewidth(0.8)+fontsize(13)); real r = 0.05; draw((0.9,0)--(3.5,0),EndArrow(size=7)); filldraw((4,2.5)--(7,2.5)--(7,-2.5)--(4,-2.5)--cycle,gray(0.65)); fill(circle((5.5,1.25),0.8),white); fill(circle((5.5,1.25),0.5),gray(0.65)); fill((4.3,-r)--(6.7,-r)--(6.7,-1-r)--(4.3,-1-r)--cycle,white); fill((4.3,-1.25+r)--(6.7,-1.25+r)--(6.7,-2.25+r)--(4.3,-2.25+r)--cycle,white); fill((4.6,-0.25-r)--(6.4,-0.25-r)--(6.4,-0.75-r)--(4.6,-0.75-r)--cycle,gray(0.65)); fill((4.6,-1.5+r)--(6.4,-1.5+r)--(6.4,-2+r)--(4.6,-2+r)--cycle,gray(0.65)); label("<math>N</math>",(0.45,0)); draw((7.5,1.25)--(11.25,1.25),EndArrow(size=7)); draw((7.5,-1.25)--(11.25,-1.25),EndArrow(size=7)); label("if <math>N</math> is even",(9.25,1.25),N); label("if <math>N</math> is odd",(9.25,-1.25),N); label("<math>\frac N2</math>",(12,1.25)); label("<math>3N+1</math>",(12.6,-1.25)); [/asy] | |
For example, starting with an input of <math>N=7,</math> the machine will output <math>3 \cdot 7 +1 = 22.</math> Then if the output is repeatedly inserted into the machine five more times, the final output is <math>26.</math><cmath>7 \to 22 \to 11 \to 34 \to 17 \to 52 \to 26</cmath>When the same <math>6</math>-step process is applied to a different starting value of <math>N,</math> the final output is <math>1.</math> What is the sum of all such integers <math>N?</math><cmath>N \to \rule{0.5cm}{0.15mm} \to \rule{0.5cm}{0.15mm} \to \rule{0.5cm}{0.15mm} \to \rule{0.5cm}{0.15mm} \to \rule{0.5cm}{0.15mm} \to 1</cmath> | For example, starting with an input of <math>N=7,</math> the machine will output <math>3 \cdot 7 +1 = 22.</math> Then if the output is repeatedly inserted into the machine five more times, the final output is <math>26.</math><cmath>7 \to 22 \to 11 \to 34 \to 17 \to 52 \to 26</cmath>When the same <math>6</math>-step process is applied to a different starting value of <math>N,</math> the final output is <math>1.</math> What is the sum of all such integers <math>N?</math><cmath>N \to \rule{0.5cm}{0.15mm} \to \rule{0.5cm}{0.15mm} \to \rule{0.5cm}{0.15mm} \to \rule{0.5cm}{0.15mm} \to \rule{0.5cm}{0.15mm} \to 1</cmath> | ||
<math>\textbf{(A) }73 \qquad \textbf{(B) }74 \qquad \textbf{(C) }75 \qquad \textbf{(D) }82 \qquad \textbf{(E) }83</math> | <math>\textbf{(A) }73 \qquad \textbf{(B) }74 \qquad \textbf{(C) }75 \qquad \textbf{(D) }82 \qquad \textbf{(E) }83</math> | ||
+ | ==See also== | ||
+ | {{AMC8 box|year=2020|num-b=20|num-a=23}} | ||
+ | {{MAA Notice}} |
Revision as of 00:28, 18 November 2020
Problem 22
When a positive integer is fed into a machine, the output is a number calculated according to the rule shown below.
[asy] size(300); defaultpen(linewidth(0.8)+fontsize(13)); real r = 0.05; draw((0.9,0)--(3.5,0),EndArrow(size=7)); filldraw((4,2.5)--(7,2.5)--(7,-2.5)--(4,-2.5)--cycle,gray(0.65)); fill(circle((5.5,1.25),0.8),white); fill(circle((5.5,1.25),0.5),gray(0.65)); fill((4.3,-r)--(6.7,-r)--(6.7,-1-r)--(4.3,-1-r)--cycle,white); fill((4.3,-1.25+r)--(6.7,-1.25+r)--(6.7,-2.25+r)--(4.3,-2.25+r)--cycle,white); fill((4.6,-0.25-r)--(6.4,-0.25-r)--(6.4,-0.75-r)--(4.6,-0.75-r)--cycle,gray(0.65)); fill((4.6,-1.5+r)--(6.4,-1.5+r)--(6.4,-2+r)--(4.6,-2+r)--cycle,gray(0.65)); label("",(0.45,0)); draw((7.5,1.25)--(11.25,1.25),EndArrow(size=7)); draw((7.5,-1.25)--(11.25,-1.25),EndArrow(size=7)); label("if is even",(9.25,1.25),N); label("if is odd",(9.25,-1.25),N); label("",(12,1.25)); label("",(12.6,-1.25)); [/asy] For example, starting with an input of the machine will output Then if the output is repeatedly inserted into the machine five more times, the final output is When the same -step process is applied to a different starting value of the final output is What is the sum of all such integers
See also
2020 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.