Difference between revisions of "2020 AMC 8 Problems/Problem 8"

m (Video Solution)
m (Video Solution)
Line 11: Line 11:
  
 
==Video Solution==
 
==Video Solution==
https://youtu.be/SPNobOd4t1c (Includes all the problems and has a free class update)
 
 
 
 
 
https://youtu.be/61c1MR9tne8
 
https://youtu.be/61c1MR9tne8
  

Revision as of 18:46, 31 December 2020

Problem

Ricardo has $2020$ coins, some of which are pennies ($1$-cent coins) and the rest of which are nickels ($5$-cent coins). He has at least one penny and at least one nickel. What is the difference in cents between the greatest possible and least possible amounts of money that Ricardo can have?

$\textbf{(A) }\text{8062} \qquad \textbf{(B) }\text{8068} \qquad \textbf{(C) }\text{8072} \qquad \textbf{(D) }\text{8076}\qquad \textbf{(E) }\text{8082}$

Solution 1

Clearly, the amount of money Ricardo has will be maximized when he has the maximum number of nickels. Since he must have at least one penny, the greatest number of nickels he can have is $2019$, giving a total of $(2019\cdot 5 + 1)$ cents. Analogously, the amount of money he has will be least when he has the greatest number of pennies; as he must have at least one nickel, the greatest number of pennies he can have is also $2019$, giving a total of $(2019\cdot 1 + 5)$ cents. Hence the required difference is \[(2019\cdot 5 + 1)-(2019\cdot 1 + 5)=2019\cdot 4-4=4\cdot 2018=\boxed{\textbf{(C) }8072}\]

Solution 2

Suppose Ricardo has $p$ pennies, so then he has $(2020-p)$ nickels. In order to have at least one penny and at least one nickel, we require $p \geq 1$ and $2020 - p \geq 1$, i.e. $1 \leq p \leq 2019$. The number of cents he has is $p+5(2020-p) = 10100-4p$, so the maximum is $10100-4 \cdot 1$ and the minimum is $10100 - 4 \cdot 2019$, and the difference is therefore \[(10100 - 4\cdot 1) - (10100 - 4\cdot 2019) = 4\cdot 2019 - 4 = 4\cdot 2018 = \boxed{\textbf{(C) }8072}\]

Video Solution

https://youtu.be/61c1MR9tne8

See also

2020 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png