Difference between revisions of "1993 AIME Problems/Problem 4"

m
(solutions by (1) shyong, (2) 4everwise)
Line 2: Line 2:
 
How many ordered four-tuples of integers <math>(a,b,c,d)\,</math> with <math>0 < a < b < c < d < 500\,</math> satisfy <math>a + d = b + c\,</math> and <math>bc - ad = 93\,</math>?
 
How many ordered four-tuples of integers <math>(a,b,c,d)\,</math> with <math>0 < a < b < c < d < 500\,</math> satisfy <math>a + d = b + c\,</math> and <math>bc - ad = 93\,</math>?
  
 +
__TOC__
 
== Solution ==
 
== Solution ==
{{solution}}
+
=== Solution 1 ===
 +
Let <math>k = a + d = b + c</math> so <math>d = k-a, b=k-c</math>. It follows that <math>(k-c)c - a(k-a) = (a-c)(a+c-k) = (c-a)(d-c) = 93</math>. Hence <math>(c - a,d - a) = (1,93),(3,31),(31,3),(93,1)</math>.
 +
 
 +
Solve them in tems of <math>c</math> to get
 +
<math>(a,b,c,d) = (c - 93,c - 92,c,c + 1),</math> <math>(c - 31,c - 28,c,c + 3),</math> <math>(c - 1,c + 92,c,c + 93),</math> <math>(c - 3,c + 28,c,c + 31)</math>. The last two solution doesnt follow <math>a < b < c < d</math>, so we only need to consider the first two solutions.
 +
 
 +
The first solution gives us <math>c - 93\geq 1</math> and <math>c + 1\leq 499</math> <math>\implies 94\leq c\leq 498</math>, and the second one gives us <math>32\leq c\leq 496</math>.
 +
 
 +
So the total number of such four-tuples is <math>405 + 465 = \boxed{870}</math>.
 +
 
 +
=== Solution 2 ===
 +
Let <math>b = a + m</math> and <math>c = a + m + n</math>. From <math>a + d = b + c</math>, <math>d = b + c - a = a + 2m + n</math>.
 +
 
 +
Substituting <math>b = a + m</math>, <math>c = a + m + n</math>, and <math>d = b + c - a = a + 2m + n</math> into <math>bc - ad = 93</math>,
 +
<cmath>
 +
bc - ad = (1 + m)(1 + m + n) - a(a + 2m + n) = m(m + n). = 93 = 3(31)
 +
</cmath>
 +
Hence, <math>(m,n) = (1,92)</math> or <math>(3,28)</math>.
 +
 
 +
For <math>(m,n) = (1,92)</math>, we know that <math>0 < a < a + 1 < a + 93 < a + 94 < 500</math>, so there are <math>405</math> four-tuples. For <math>(m,n) = (3,28)</math>, <math>0 < a < a + 3 < a + 31 < a + 34 < 500</math>, and there are <math>465</math> four-tuples. In total, we have <math>405 + 465 = 870</math> four-tuples.
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=1993|num-b=3|num-a=5}}
 
{{AIME box|year=1993|num-b=3|num-a=5}}
 +
 +
[[Category:Intermediate Algebra Problems]]

Revision as of 16:36, 20 April 2008

Problem

How many ordered four-tuples of integers $(a,b,c,d)\,$ with $0 < a < b < c < d < 500\,$ satisfy $a + d = b + c\,$ and $bc - ad = 93\,$?

Solution

Solution 1

Let $k = a + d = b + c$ so $d = k-a, b=k-c$. It follows that $(k-c)c - a(k-a) = (a-c)(a+c-k) = (c-a)(d-c) = 93$. Hence $(c - a,d - a) = (1,93),(3,31),(31,3),(93,1)$.

Solve them in tems of $c$ to get $(a,b,c,d) = (c - 93,c - 92,c,c + 1),$ $(c - 31,c - 28,c,c + 3),$ $(c - 1,c + 92,c,c + 93),$ $(c - 3,c + 28,c,c + 31)$. The last two solution doesnt follow $a < b < c < d$, so we only need to consider the first two solutions.

The first solution gives us $c - 93\geq 1$ and $c + 1\leq 499$ $\implies 94\leq c\leq 498$, and the second one gives us $32\leq c\leq 496$.

So the total number of such four-tuples is $405 + 465 = \boxed{870}$.

Solution 2

Let $b = a + m$ and $c = a + m + n$. From $a + d = b + c$, $d = b + c - a = a + 2m + n$.

Substituting $b = a + m$, $c = a + m + n$, and $d = b + c - a = a + 2m + n$ into $bc - ad = 93$, \[bc - ad = (1 + m)(1 + m + n) - a(a + 2m + n) = m(m + n). = 93 = 3(31)\] Hence, $(m,n) = (1,92)$ or $(3,28)$.

For $(m,n) = (1,92)$, we know that $0 < a < a + 1 < a + 93 < a + 94 < 500$, so there are $405$ four-tuples. For $(m,n) = (3,28)$, $0 < a < a + 3 < a + 31 < a + 34 < 500$, and there are $465$ four-tuples. In total, we have $405 + 465 = 870$ four-tuples.

See also

1993 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions