Difference between revisions of "2021 AMC 12B Problems/Problem 18"

(add solution)
Line 4: Line 4:
 
<math>\textbf{(A) }-2 \qquad \textbf{(B) }-1 \qquad \textbf{(C) }\frac12\qquad \textbf{(D) }1 \qquad \textbf{(E) }4</math>
 
<math>\textbf{(A) }-2 \qquad \textbf{(B) }-1 \qquad \textbf{(C) }\frac12\qquad \textbf{(D) }1 \qquad \textbf{(E) }4</math>
  
==Solution==
+
==Solution 1==
 +
Using the fact <math>z\bar{z}=|z|^2</math>, the equation rewrites itself as
 +
 
 +
<cmath>12z\bar{z}=2(z+2)(\bar{z}+2)+(z^2+1)(\bar{z}^2+1)+31</cmath>
 +
<cmath>-12z\bar{z}+2z\bar{z}+4(z+\bar{z})+8+z^2\bar{z}^2+(z^2+\bar{z}^2)+32=0</cmath>
 +
<cmath>\left((z^2+2z\bar{z}+\bar{z}^2)+4(z+\bar{z})+4\right)+\left(z^2\bar{z}^2-12z\bar{z}+36\right)=0</cmath>
 +
<cmath>(z+\bar{z}+2)^2+(z\bar{z}-6)^2=0.</cmath>
 +
As the two quantities in the parentheses are real, <math>z+\bar{z}=\boxed{\textbf{(A) }-2}</math>.
 +
 
 +
 
 +
==Solution 2==
 
The answer being in the form <math>z+\frac 6z</math> means that there are two solutions, some complex number and its complex conjugate. <cmath>a+bi = \frac{6}{a-bi}</cmath> <cmath>a^2+b^2=6</cmath> We should then be able to test out some ordered pairs of <math>(a, b)</math>. After testing it out, we get the ordered pairs of <math>(-1, \sqrt{5})</math> and its conjugate <math>(-1, -\sqrt{5})</math>. Plugging this into answer format gives us <math>\boxed{\textbf{(A) }-2}</math> ~Lopkiloinm
 
The answer being in the form <math>z+\frac 6z</math> means that there are two solutions, some complex number and its complex conjugate. <cmath>a+bi = \frac{6}{a-bi}</cmath> <cmath>a^2+b^2=6</cmath> We should then be able to test out some ordered pairs of <math>(a, b)</math>. After testing it out, we get the ordered pairs of <math>(-1, \sqrt{5})</math> and its conjugate <math>(-1, -\sqrt{5})</math>. Plugging this into answer format gives us <math>\boxed{\textbf{(A) }-2}</math> ~Lopkiloinm
  

Revision as of 14:34, 12 February 2021

Problem

Let $z$ be a complex number satisfying $12|z|^2=2|z+2|^2+|z^2+1|^2+31.$ What is the value of $z+\frac 6z?$

$\textbf{(A) }-2 \qquad \textbf{(B) }-1 \qquad \textbf{(C) }\frac12\qquad \textbf{(D) }1 \qquad \textbf{(E) }4$

Solution 1

Using the fact $z\bar{z}=|z|^2$, the equation rewrites itself as

\[12z\bar{z}=2(z+2)(\bar{z}+2)+(z^2+1)(\bar{z}^2+1)+31\] \[-12z\bar{z}+2z\bar{z}+4(z+\bar{z})+8+z^2\bar{z}^2+(z^2+\bar{z}^2)+32=0\] \[\left((z^2+2z\bar{z}+\bar{z}^2)+4(z+\bar{z})+4\right)+\left(z^2\bar{z}^2-12z\bar{z}+36\right)=0\] \[(z+\bar{z}+2)^2+(z\bar{z}-6)^2=0.\] As the two quantities in the parentheses are real, $z+\bar{z}=\boxed{\textbf{(A) }-2}$.


Solution 2

The answer being in the form $z+\frac 6z$ means that there are two solutions, some complex number and its complex conjugate. \[a+bi = \frac{6}{a-bi}\] \[a^2+b^2=6\] We should then be able to test out some ordered pairs of $(a, b)$. After testing it out, we get the ordered pairs of $(-1, \sqrt{5})$ and its conjugate $(-1, -\sqrt{5})$. Plugging this into answer format gives us $\boxed{\textbf{(A) }-2}$ ~Lopkiloinm

See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png