Difference between revisions of "2020 AMC 8 Problems/Problem 12"

(Video Solution)
Line 20: Line 20:
 
==Video Solution==
 
==Video Solution==
 
https://youtu.be/xjwDsaRE_Wo
 
https://youtu.be/xjwDsaRE_Wo
 +
 +
==Video Solution by Interstigation==
 +
https://youtu.be/YnwkBZTv5Fw?t=504
 +
 +
~Interstigation
  
 
==See also==
 
==See also==
 
{{AMC8 box|year=2020|num-b=11|num-a=13}}
 
{{AMC8 box|year=2020|num-b=11|num-a=13}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 13:32, 18 April 2021

Problem

For a positive integer $n$, the factorial notation $n!$ represents the product of the integers from $n$ to $1$. What value of $N$ satisfies the following equation? \[5!\cdot 9!=12\cdot N!\]

$\textbf{(A) }10\qquad\textbf{(B) }11\qquad\textbf{(C) }12\qquad\textbf{(D) }13\qquad\textbf{(E) }14\qquad$

Solution 1

We have $5! = 2 \cdot 3 \cdot 4 \cdot 5$, and $2 \cdot 5 \cdot 9! = 10 \cdot 9! = 10!$. Therefore the equation becomes $3 \cdot 4 \cdot 10! = 12 \cdot N!$, and so $12 \cdot 10! = 12 \cdot N!$. Cancelling the $12$s, it is clear that $N=\boxed{\textbf{(A) }10}$.

Solution 2 (variant of Solution 1)

Since $5! = 120$, we obtain $120\cdot 9!=12\cdot N!$, which becomes $12\cdot 10\cdot 9!=12\cdot N!$ and thus $12 \cdot 10!=12\cdot N!$. We therefore deduce $N=\boxed{\textbf{(A) }10}$.

Solution 3 (using answer choices)

We can see that the answers $\textbf{(B)}$ to $\textbf{(E)}$ contain a factor of $11$, but there is no such factor of $11$ in $5! \cdot 9!$. Therefore, the answer must be $\boxed{\textbf{(A) }10}$.

Video Solution by WhyMath

https://youtu.be/9k59v-Fr3aE

~savannahsolver

Video Solution

https://youtu.be/xjwDsaRE_Wo

Video Solution by Interstigation

https://youtu.be/YnwkBZTv5Fw?t=504

~Interstigation

See also

2020 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png