Difference between revisions of "1984 AIME Problems/Problem 7"

(See also)
(solution)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
The function f is defined on the set of integers and satisfies
+
The [[function]] f is defined on the [[set]] of [[integer]]s and satisfies
 
<math>
 
<math>
 
f(n)=
 
f(n)=
Line 12: Line 12:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
Define <math>\displaystyle f^{h} = f(f(\cdots f(f(x))\cdots))</math>, where the function <math>f</math> is performed <math>h</math> times. We find that <math> f(84) = f(f(89) = f^2(89) = f^3(94) = \ldots f^{y}(1004)</math>. <math>\displaystyle 1004 = 84 + 5(y - 1) \Longrightarrow y = 185</math>. So we now need to reduce <math>\displaystyle f^{185}(1004)</math>.
 +
 
 +
Let’s write out a couple more iterations of this function:
 +
 
 +
<div style="text-align:center;"><math>\displaystyle f^{185}(1004) = f^{184}(1001) = f^{183}(998)</math><br /><math>= f^{184}(1003) = f^{183}(1000) = f^{182}(997)</math><br /><math>= f^{183}(1002) = f^{182}(999) = f^{183}(1004)</math></div>
 +
 
 +
So this function reiterates with a period of 2 for <math>x</math>. It might be tempting at first to assume that <math>f(1004) = 999</math> is the answer; however, that is not true since the solution occurs slightly before that. Start at <math>f^3(1004)</math>:
 +
 
 +
<div style="text-align:center;"><math>f^{3}(1004) = f^{2}(1001) = f(998)</math><br /><math>= f^{2}(1003) = f(1000) = 997</math></div>
 +
 
 
== See also ==
 
== See also ==
 
{{AIME box|year=1984|num-b=6|num-a=8}}
 
{{AIME box|year=1984|num-b=6|num-a=8}}
Line 18: Line 27:
 
* [[American Invitational Mathematics Examination]]
 
* [[American Invitational Mathematics Examination]]
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]
 +
 +
[[Category:Intermediate Algebra Problems]]

Revision as of 19:31, 10 September 2007

Problem

The function f is defined on the set of integers and satisfies $f(n)= \begin{cases}  n-3 & \mbox{if }n\ge 1000 \\  f(f(n+5)) & \mbox{if }n<1000 \end{cases}$

Find $\displaystyle f(84)$.

Solution

Define $\displaystyle f^{h} = f(f(\cdots f(f(x))\cdots))$, where the function $f$ is performed $h$ times. We find that $f(84) = f(f(89) = f^2(89) = f^3(94) = \ldots f^{y}(1004)$. $\displaystyle 1004 = 84 + 5(y - 1) \Longrightarrow y = 185$. So we now need to reduce $\displaystyle f^{185}(1004)$.

Let’s write out a couple more iterations of this function:

$\displaystyle f^{185}(1004) = f^{184}(1001) = f^{183}(998)$
$= f^{184}(1003) = f^{183}(1000) = f^{182}(997)$
$= f^{183}(1002) = f^{182}(999) = f^{183}(1004)$

So this function reiterates with a period of 2 for $x$. It might be tempting at first to assume that $f(1004) = 999$ is the answer; however, that is not true since the solution occurs slightly before that. Start at $f^3(1004)$:

$f^{3}(1004) = f^{2}(1001) = f(998)$
$= f^{2}(1003) = f(1000) = 997$

See also

1984 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions