Difference between revisions of "2004 AMC 12A Problems/Problem 17"

(Solution 1 (Forwards))
Line 13: Line 13:
  
 
== Solution 1 (Forwards) ==
 
== Solution 1 (Forwards) ==
 +
Applying (ii) repeatedly, we have
 +
<cmath>\begin{alignat*}{8}
 +
f(2) &= 1\cdot f(1) &&= 1, \\
 +
f\left(2^2\right) &= 2\cdot f(2)  &&= 2, \\
 +
f\left(2^3\right) &= 2^2\cdot f\left(2^2\right) &&= 2^{2+1}, \\
 +
f\left(2^4\right) &= 2^3\cdot f\left(2^3\right) &&= 2^{3+2+1},
 +
\end{alignat*}</cmath>
 +
and so on.
 +
 +
In general, note that <cmath>f\left(2^n\right)=2^{(n-1)+(n-2)+\cdots+3+2+1}</cmath> for any positive integer <math>n.</math>
 +
 +
Finally, the answer is <cmath>2^{100}=</cmath>
 +
 +
~MRENTHUSIASM
  
 
== Solution 2 (Backwards) ==
 
== Solution 2 (Backwards) ==

Revision as of 23:42, 9 July 2021

The following problem is from both the 2004 AMC 12A #17 and 2004 AMC 10A #24, so both problems redirect to this page.

Problem

Let $f$ be a function with the following properties:

(i) $f(1) = 1$, and

(ii) $f(2n) = n \cdot f(n)$ for any positive integer $n$.

What is the value of $f(2^{100})$?

$\text {(A)}\ 1 \qquad \text {(B)}\ 2^{99} \qquad \text {(C)}\ 2^{100} \qquad \text {(D)}\ 2^{4950} \qquad \text {(E)}\ 2^{9999}$

Solution 1 (Forwards)

Applying (ii) repeatedly, we have \begin{alignat*}{8} f(2) &= 1\cdot f(1) &&= 1, \\  f\left(2^2\right) &= 2\cdot f(2)  &&= 2, \\  f\left(2^3\right) &= 2^2\cdot f\left(2^2\right) &&= 2^{2+1}, \\ f\left(2^4\right) &= 2^3\cdot f\left(2^3\right) &&= 2^{3+2+1}, \end{alignat*} and so on.

In general, note that \[f\left(2^n\right)=2^{(n-1)+(n-2)+\cdots+3+2+1}\] for any positive integer $n.$

Finally, the answer is \[2^{100}=\]

~MRENTHUSIASM

Solution 2 (Backwards)

We have \begin{align*} f\left(2^{100}\right) &= 2^{99} \cdot f\left(2^{99}\right) \\ &= 2^{99} \cdot 2^{98} \cdot f\left(2^{98}\right) \\ &= 2^{99} \cdot 2^{98} \cdot 2^{97} \cdot f\left(2^{97}\right) \\ &= \cdots \\ &= 2^{99} \cdot 2^{98} \cdot 2^{97} \cdots 2^{2} \cdot 2^{1} \cdot 1 \cdot f(1) \\ &= 2^{99} \cdot 2^{98} \cdot 2^{97} \cdots 2^{2} \cdot 2^{1} \cdot 1 \cdot 1 \\ &= 2^{99 + 98 + 97 + \cdots + 2 + 1} \\ &= 2^{\frac{100(99)}{2}} \\ &= \boxed{\text {(D)}\ 2^{4950}} \end{align*} ~Azjps (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Video Solution

https://youtu.be/qj5hBxYWalI

See also

2004 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png