Difference between revisions of "2004 AMC 12A Problems/Problem 17"
MRENTHUSIASM (talk | contribs) (→Solution 1 (Forwards)) |
MRENTHUSIASM (talk | contribs) |
||
Line 13: | Line 13: | ||
== Solution 1 (Forwards) == | == Solution 1 (Forwards) == | ||
− | + | From (ii), note that | |
<cmath>\begin{alignat*}{8} | <cmath>\begin{alignat*}{8} | ||
f(2) &= 1\cdot f(1) &&= 1, \\ | f(2) &= 1\cdot f(1) &&= 1, \\ | ||
Line 22: | Line 22: | ||
and so on. | and so on. | ||
− | In general, | + | In general, we have <cmath>f\left(2^n\right)=2^{(n-1)+(n-2)+(n-3)+\cdots+3+2+1}</cmath> for any positive integer <math>n.</math> |
− | |||
− | |||
+ | Therefore, the answer is | ||
+ | <cmath>\begin{align*} | ||
+ | 2^{100}&=2^{99+98+97+\cdots+3+2+1} \\ | ||
+ | &=2^{99\cdot100/2} \\ | ||
+ | &= \boxed{\text {(D)}\ 2^{4950}}. | ||
+ | \end{align*}</cmath> | ||
~MRENTHUSIASM | ~MRENTHUSIASM | ||
Line 35: | Line 39: | ||
&= 2^{99} \cdot 2^{98} \cdot 2^{97} \cdot f\left(2^{97}\right) \\ | &= 2^{99} \cdot 2^{98} \cdot 2^{97} \cdot f\left(2^{97}\right) \\ | ||
&= \cdots \\ | &= \cdots \\ | ||
− | &= 2^{99} \cdot 2^{98} \cdot 2^{97} \cdots 2^{2} \cdot 2^{1} \cdot 1 \cdot f(1) \\ | + | &= 2^{99} \cdot 2^{98} \cdot 2^{97} \cdots 2^{3} \cdot 2^{2} \cdot 2^{1} \cdot 1 \cdot f(1) \\ |
− | &= 2^{99} \cdot 2^{98} \cdot 2^{97} \cdots 2^{2} \cdot 2^{1} \cdot 1 \cdot 1 \\ | + | &= 2^{99} \cdot 2^{98} \cdot 2^{97} \cdots 2^{3} \cdot 2^{2} \cdot 2^{1} \cdot 1 \cdot 1 \\ |
− | &= 2^{99 + 98 + 97 + \cdots + 2 + 1} \\ | + | &=2^{99 + 98 + 97 + \cdots + 3 + 2 + 1} \\ |
− | &= 2^{\ | + | &=2^{99\cdot100/2} \\ |
− | &= \boxed{\text {(D)}\ 2^{4950}} | + | &= \boxed{\text {(D)}\ 2^{4950}}. |
\end{align*}</cmath> | \end{align*}</cmath> | ||
~Azjps (Fundamental Logic) | ~Azjps (Fundamental Logic) |
Revision as of 23:55, 9 July 2021
- The following problem is from both the 2004 AMC 12A #17 and 2004 AMC 10A #24, so both problems redirect to this page.
Problem
Let be a function with the following properties:
(i) , and
(ii) for any positive integer .
What is the value of ?
Solution 1 (Forwards)
From (ii), note that and so on.
In general, we have for any positive integer
Therefore, the answer is ~MRENTHUSIASM
Solution 2 (Backwards)
We have ~Azjps (Fundamental Logic)
~MRENTHUSIASM (Reconstruction)
Video Solution
See also
2004 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2004 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.