Difference between revisions of "2020 AMC 10A Problems/Problem 3"
MRENTHUSIASM (talk | contribs) (→Solution 3: Made the solution COLORFUL) |
MRENTHUSIASM (talk | contribs) (Ordered the solutions by elegance. PM me if you disagree with this order--I pushed the observation solutions to the end.) |
||
Line 6: | Line 6: | ||
== Solution 1 == | == Solution 1 == | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
If <math>x\neq y,</math> then <math>\frac{x-y}{y-x}=1.</math> We use this fact to simplify the original expression: | If <math>x\neq y,</math> then <math>\frac{x-y}{y-x}=1.</math> We use this fact to simplify the original expression: | ||
<cmath>\frac{\color{red}\overset{-1}{\cancel{a-3}}}{\color{blue}\underset{1}{\cancel{5-c}}} \cdot \frac{\color{green}\overset{-1}{\cancel{b-4}}}{\color{red}\underset{1}{\cancel{3-a}}} \cdot \frac{\color{blue}\overset{-1}{\cancel{c-5}}}{\color{green}\underset{1}{\cancel{4-b}}}=(-1)(-1)(-1)=\boxed{\textbf{(A) } -1}.</cmath> | <cmath>\frac{\color{red}\overset{-1}{\cancel{a-3}}}{\color{blue}\underset{1}{\cancel{5-c}}} \cdot \frac{\color{green}\overset{-1}{\cancel{b-4}}}{\color{red}\underset{1}{\cancel{3-a}}} \cdot \frac{\color{blue}\overset{-1}{\cancel{c-5}}}{\color{green}\underset{1}{\cancel{4-b}}}=(-1)(-1)(-1)=\boxed{\textbf{(A) } -1}.</cmath> | ||
Line 18: | Line 11: | ||
~MRENTHUSIASM (<math>\LaTeX</math> Adjustments) | ~MRENTHUSIASM (<math>\LaTeX</math> Adjustments) | ||
+ | |||
+ | == Solution 2 == | ||
+ | Note that <math>a-3</math> is <math>-1</math> times <math>3-a</math>. Likewise, <math>b-4</math> is <math>-1</math> times <math>4-b</math> and <math>c-5</math> is <math>-1</math> times <math>5-c</math>. Therefore, the product of the given fraction equals <math>(-1)(-1)(-1)=\boxed{\textbf{(A) } -1}</math>. | ||
+ | |||
+ | == Solution 3 == | ||
+ | Substituting values for <math>a, b,</math> and <math>c</math>, we see that if each of them satisfy the inequalities above, the value goes to be <math>-1</math>. | ||
+ | Therefore, the product of the given fraction equals <math>(-1)(-1)(-1)=\boxed{\textbf{(A) } -1}</math>. | ||
== Video Solution 1 == | == Video Solution 1 == |
Revision as of 15:39, 27 August 2021
Contents
Problem
Assuming , , and , what is the value in simplest form of the following expression?
Solution 1
If then We use this fact to simplify the original expression: ~CoolJupiter (Solution)
~MRENTHUSIASM ( Adjustments)
Solution 2
Note that is times . Likewise, is times and is times . Therefore, the product of the given fraction equals .
Solution 3
Substituting values for and , we see that if each of them satisfy the inequalities above, the value goes to be . Therefore, the product of the given fraction equals .
Video Solution 1
~IceMatrix
Video Solution 2
Education, The Study of Everything
Video Solution 3
https://www.youtube.com/watch?v=7-3sl1pSojc
~bobthefam
Video Solution 4
~savannahsolver
Video Solution 5
https://youtu.be/ba6w1OhXqOQ?t=956
~ pi_is_3.14
See Also
2020 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.