Difference between revisions of "2003 AIME I Problems/Problem 10"
m (→Solution: img) |
(solution by frt; asymptotes) |
||
Line 2: | Line 2: | ||
[[Triangle]] <math> ABC </math> is [[isosceles triangle | isosceles]] with <math> AC = BC </math> and <math> \angle ACB = 106^\circ. </math> Point <math> M </math> is in the interior of the triangle so that <math> \angle MAC = 7^\circ </math> and <math> \angle MCA = 23^\circ. </math> Find the number of degrees in <math> \angle CMB. </math> | [[Triangle]] <math> ABC </math> is [[isosceles triangle | isosceles]] with <math> AC = BC </math> and <math> \angle ACB = 106^\circ. </math> Point <math> M </math> is in the interior of the triangle so that <math> \angle MAC = 7^\circ </math> and <math> \angle MCA = 23^\circ. </math> Find the number of degrees in <math> \angle CMB. </math> | ||
+ | __TOC__ | ||
== Solution == | == Solution == | ||
− | + | <center><asy> | |
+ | pointpen = black; pathpen = black+linewidth(0.7); size(220); | ||
− | + | /* We will WLOG AB = 2 to draw following */ | |
− | <math>\frac{\sin 150^\circ}{\sin 7^\circ} = \frac{AC}{CM} = \frac{BC}{CM} = \frac{\sin \theta}{\sin 97^\circ - \theta}</ | + | pair A=(0,0), B=(2,0), C=(1,Tan(37)), M=IP(A--(2Cos(30),2Sin(30)),B--B+(-2,2Tan(23))); |
+ | |||
+ | D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); D(A--D(MP("M",M))--B); D(C--M); | ||
+ | </asy></center> | ||
+ | |||
+ | === Solution 1 === | ||
+ | <center><asy> | ||
+ | pointpen = black; pathpen = black+linewidth(0.7); size(220); | ||
+ | |||
+ | /* We will WLOG AB = 2 to draw following */ | ||
+ | |||
+ | pair A=(0,0), B=(2,0), C=(1,Tan(37)), M=IP(A--(2Cos(30),2Sin(30)),B--B+(-2,2Tan(23))), N=(2-M.x,M.y); | ||
+ | |||
+ | D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); D(A--D(MP("M",M))--B); D(C--M); D(C--D(MP("N",N))--B--N--M,linetype("6 6")+linewidth(0.7)); | ||
+ | </asy></center> | ||
+ | |||
+ | Take point <math>N</math> inside <math>\triangle ABC</math> such that <math>\angle CBN = 7^\circ</math> and <math>\angle BCN = 23^\circ</math>. | ||
+ | |||
+ | <math>\angle MCN = 106^\circ - 2\cdot 23^\circ = 60^\circ</math>. Also, since <math>\triangle AMC</math> and <math>\triangle BNC</math> are congruent (by ASA), <math>CM = CN</math>. Hence <math>\triangle CMN</math> is an [[equilateral triangle]], so <math>\angle CNM = 60^\circ</math>. | ||
+ | |||
+ | Then <math>\angle MNB = 360^\circ - \angle CNM - \angle CNB = 360^\circ - 60^\circ - 150^\circ = 150^\circ</math>. We now see that <math>\triangle MNB</math> and <math>\triangle CNB</math> are congruent. Therefore, <math>CB = MB</math>, so <math>\angle CMB = \angle MCB = \boxed{083^\circ}</math>. | ||
+ | |||
+ | === Solution 2 === | ||
+ | From the givens, we have the following [[angle]] [[measure]]s: <math>m\angle AMC = 150^\circ</math>, <math>m\angle MCB = 83^\circ</math>. If we define <math>m\angle CMB = \theta</math> then we also have <math>m\angle CBM = 97^\circ - \theta</math>. Then apply the [[Law of Sines]] to triangles <math>\triangle AMC</math> and <math>\triangle BMC</math> to get | ||
+ | |||
+ | <cmath>\frac{\sin 150^\circ}{\sin 7^\circ} = \frac{AC}{CM} = \frac{BC}{CM} = \frac{\sin \theta}{\sin 97^\circ - \theta}</cmath> | ||
Clearing [[denominator]]s, evaluating <math>\sin 150^\circ = \frac 12</math> and applying one of our [[trigonometric identities]] to the result gives | Clearing [[denominator]]s, evaluating <math>\sin 150^\circ = \frac 12</math> and applying one of our [[trigonometric identities]] to the result gives | ||
− | < | + | <cmath>\frac{1}{2} \cos (7^\circ - \theta )= \sin 7^\circ \sin \theta</cmath> |
and multiplying through by 2 and applying the [[double angle formula]] gives | and multiplying through by 2 and applying the [[double angle formula]] gives | ||
− | < | + | <cmath>\cos 7^\circ\cos\theta + \sin7^\circ\sin\theta = 2 \sin7^\circ \sin\theta</cmath> |
+ | |||
+ | and so <math>\cos 7^\circ \cos \theta = \sin 7^\circ \sin\theta \Longleftrightarrow \tan 7^{\circ} = \cot \theta</math>; since <math>0^\circ < \theta < 180^\circ</math>, we must have <math>\theta = 83^\circ</math>, so the answer is <math>083</math>. | ||
− | + | === Solution 3 === | |
+ | [[Without loss of generality]], let <math>AC = BC = 1</math>. Then, using [[Law of Sines]] in triangle <math>AMC</math>, we get <math>\frac {1}{\sin 150} = \frac {MC}{\sin 7}</math>, and using the sine addition formula to evaluate <math>\sin 150 = \sin (90 + 60)</math>, we get <math>MC = 2 \sin 7</math>. | ||
− | + | Then, using [[Law of Cosines]] in triangle <math>MCB</math>, we get <math>MB^2 = 4\sin^2 7 + 1 - 4\sin 7(\cos 83) = 1</math>, since <math>\cos 83 = \sin 7</math>. So triangle <math>MCB</math> is isosceles, and <math>\angle CMB = \boxed{083}</math>. | |
== See also == | == See also == |
Revision as of 15:32, 10 June 2008
Problem
Triangle is isosceles with and Point is in the interior of the triangle so that and Find the number of degrees in
Solution
Solution 1
Take point inside such that and .
. Also, since and are congruent (by ASA), . Hence is an equilateral triangle, so .
Then . We now see that and are congruent. Therefore, , so .
Solution 2
From the givens, we have the following angle measures: , . If we define then we also have . Then apply the Law of Sines to triangles and to get
Clearing denominators, evaluating and applying one of our trigonometric identities to the result gives
and multiplying through by 2 and applying the double angle formula gives
and so ; since , we must have , so the answer is .
Solution 3
Without loss of generality, let . Then, using Law of Sines in triangle , we get , and using the sine addition formula to evaluate , we get .
Then, using Law of Cosines in triangle , we get , since . So triangle is isosceles, and .
See also
2003 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |