Difference between revisions of "2021 Fall AMC 10A Problems/Problem 20"

(Solution 1(Oversimplified but risky))
(Solution)
Line 12: Line 12:
 
</ol>
 
</ol>
 
Squaring the first inequality, we get <math>b^4\leq 16c^2.</math> Multiplying the second inequality by <math>16,</math> we get <math>16c^2\leq 64b.</math> Combining these results, we get <cmath>b^4\leq 16c^2\leq 64b.</cmath>
 
Squaring the first inequality, we get <math>b^4\leq 16c^2.</math> Multiplying the second inequality by <math>16,</math> we get <math>16c^2\leq 64b.</math> Combining these results, we get <cmath>b^4\leq 16c^2\leq 64b.</cmath>
 +
Note that:
 +
 +
* If <math>b=1,</math> then <math>1\leq 16c^2\leq 64,</math> from which <math>c=1,2.</math>
 +
 +
* If <math>b=2,</math> then <math>16\leq 16c^2\leq 128,</math> from which <math>c=1,2.</math>
 +
 +
* If <math>b=3,</math> then <math>81\leq 16c^2\leq 192,</math> from which <math>c=3.</math>
 +
 +
* If <math>b=4,</math> then <math>256\leq 16c^2\leq 256,</math> from which <math>c=4.</math>
 +
 +
Together, there are
 +
 +
~MRENTHUSIASM
  
 
==Solution 1(Oversimplified but risky)==
 
==Solution 1(Oversimplified but risky)==

Revision as of 19:10, 22 November 2021

Problem

How many ordered pairs of positive integers $(b,c)$ exist where both $x^2+bx+c=0$ and $x^2+cx+b=0$ do not have distinct, real solutions?

$\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 10 \qquad \textbf{(E) } 12 \qquad$

Solution

A quadratic equation does not have real solutions if and only if the discriminant is nonpositive. We conclude that:

  1. Since $x^2+bx+c=0$ does not have real solutions, we have $b^2\leq 4c.$
  2. Since $x^2+cx+b=0$ does not have real solutions, we have $c^2\leq 4b.$

Squaring the first inequality, we get $b^4\leq 16c^2.$ Multiplying the second inequality by $16,$ we get $16c^2\leq 64b.$ Combining these results, we get \[b^4\leq 16c^2\leq 64b.\] Note that:

  • If $b=1,$ then $1\leq 16c^2\leq 64,$ from which $c=1,2.$
  • If $b=2,$ then $16\leq 16c^2\leq 128,$ from which $c=1,2.$
  • If $b=3,$ then $81\leq 16c^2\leq 192,$ from which $c=3.$
  • If $b=4,$ then $256\leq 16c^2\leq 256,$ from which $c=4.$

Together, there are

~MRENTHUSIASM

Solution 1(Oversimplified but risky)

We want both $x^2+bx+c$ to be $1$ value or imaginary and $x^2+cx+b$ to be $1$ value or imaginary. $x^2+4x+4$ is one such case since $\sqrt {b^2-4ac}$ is $0$. Also, $x^2+3x+3, x^2+2x+2, x^2+x+1$ are always imaginary for both b and c. We also have $x^2+x+2$ along with $x^2+2x+1$ since the latter has one solution, while the first one is imaginary. Therefore, we have $6$ total ordered pairs of integers, which is $\boxed {(B) 6}$

~Arcticturn

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png