Difference between revisions of "2021 Fall AMC 10B Problems"
(→Problem 1) |
|||
Line 33: | Line 33: | ||
<math>(\textbf{A})\: 47\qquad(\textbf{B}) \: 58\qquad(\textbf{C}) \: 59\qquad(\textbf{D}) \: 88\qquad(\textbf{E}) \: 90</math> | <math>(\textbf{A})\: 47\qquad(\textbf{B}) \: 58\qquad(\textbf{C}) \: 59\qquad(\textbf{D}) \: 88\qquad(\textbf{E}) \: 90</math> | ||
+ | |||
+ | ==Problem 10== | ||
+ | Fourty slips of paper numbered <math>1</math> to <math>40</math> are placed in a hat. Alice and Bob each draw one number from the hat without replacement, keeping their numbers hidden from each other. Alice says, "I can't tell who has the larger number." Then Bob says, "I know who has the larger number." Alice says, "You do? Is your number prime?" Bob replies, "Yes." Alice says, "In that case, if I multiply your number by <math>100</math> and add my number, the result is a perfect square. " What is the sum of the two numbers drawn from the hat? | ||
+ | |||
+ | <math>\textbf{(A) }27\qquad\textbf{(B) }37\qquad\textbf{(C) }47\qquad\textbf{(D) }57\qquad\textbf{(E) }67</math> | ||
+ | |||
+ | ==Problem 11== | ||
+ | A regular hexagon of side length <math>1{ }</math> is inscribed in a circle. Each minor arc of the circle determined by a side of the hexagon is reflected over that side. What is the area of the region bounded by these <math>6</math> reflected arcs? | ||
+ | |||
+ | <math>(\textbf{A})\: \frac{5\sqrt{3}}{2} - \pi\qquad(\textbf{B}) \: 3\sqrt{3}-\pi\qquad(\textbf{C}) \: 4\sqrt{3}-\frac{3\pi}{2}\qquad(\textbf{D}) \: \pi - \frac{\sqrt{3}}{2}\qquad(\textbf{E}) \: \frac{\pi + \sqrt{3}}{2}</math> | ||
+ | |||
+ | ==Problem 19== | ||
+ | Let <math>N</math> be the positive integer <math>7777\ldots777</math>, a <math>313</math>-digit number where each digit is a <math>7</math>. Let <math>f(r)</math> be the leading digit of the <math>r{ }</math>th root of <math>N</math>. What is<cmath>f(2) + f(3) + f(4) + f(5)+ f(6)?</cmath><math>(\textbf{A})\: 8\qquad(\textbf{B}) \: 9\qquad(\textbf{C}) \: 11\qquad(\textbf{D}) \: 22\qquad(\textbf{E}) \: 29</math> | ||
+ | |||
+ | ==Problem 22== | ||
+ | For each integer <math> n\geq 2 </math>, let <math> S_n </math> be the sum of all products <math> jk </math>, where <math> j </math> and <math> k </math> are integers and <math> 1\leq j<k\leq n </math>. What is the sum of the 10 least values of <math> n </math> such that <math> S_n </math> is divisible by <math> 3 </math>? | ||
+ | <math>\mathrm{(A)}\ 196 \qquad\mathrm{(B)}\ 197 \qquad\mathrm{(C)}\ 198 \qquad\mathrm{(D)}\ 199 \qquad\mathrm{(E)}\ 200</math> | ||
==See also== | ==See also== |
Revision as of 20:13, 22 November 2021
2021 Fall AMC 10B (Answer Key) Printable versions: • Fall AoPS Resources • Fall PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
Problem 1
What is the value of
Problem 2
Problem 3
The expression is equal to the fraction in which and are positive integers whose greatest common divisor is . What is
Problem 4
At noon on a certain day, Minneapolis is degrees warmer than St. Louis. At the temperature in Minneapolis has fallen by degrees while the temperature in St. Louis has risen by degrees, at which time the temperatures in the two cities differ by degrees. What is the product of all possible values of
Problem 5
Let . Which of the following is equal to
Problem 6
The least positive integer with exactly distinct positive divisors can be written in the form , where and are integers and is not a divisor of . What is
Problem 7
The least positive integer with exactly distinct positive divisors can be written in the form , where and are integers and is not a divisor of . What is
Problem 10
Fourty slips of paper numbered to are placed in a hat. Alice and Bob each draw one number from the hat without replacement, keeping their numbers hidden from each other. Alice says, "I can't tell who has the larger number." Then Bob says, "I know who has the larger number." Alice says, "You do? Is your number prime?" Bob replies, "Yes." Alice says, "In that case, if I multiply your number by and add my number, the result is a perfect square. " What is the sum of the two numbers drawn from the hat?
Problem 11
A regular hexagon of side length is inscribed in a circle. Each minor arc of the circle determined by a side of the hexagon is reflected over that side. What is the area of the region bounded by these reflected arcs?
Problem 19
Let be the positive integer , a -digit number where each digit is a . Let be the leading digit of the th root of . What is
Problem 22
For each integer , let be the sum of all products , where and are integers and . What is the sum of the 10 least values of such that is divisible by ?
See also
2021 Fall AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by 2021 Fall AMC 10A |
Followed by 2022 AMC 10A | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.