Difference between revisions of "2021 Fall AMC 10A Problems/Problem 15"

(Solution 2 (Similar Triangles))
(Solution 2 (Similar Triangles))
Line 28: Line 28:
 
draw(I--C);
 
draw(I--C);
 
draw(I--A);
 
draw(I--A);
draw(right angle ark(A,C,I));  
+
draw(rightanglemark(A,C,I));  
 
draw(rightanglemark(A,B,I));
 
draw(rightanglemark(A,B,I));
  

Revision as of 23:47, 23 November 2021

Isosceles triangle $ABC$ has $AB = AC = 3\sqrt6$, and a circle with radius $5\sqrt2$ is tangent to line $AB$ at $B$ and to line $AC$ at $C$. What is the area of the circle that passes through vertices $A$, $B$, and $C?$

$\textbf{(A) }24\pi\qquad\textbf{(B) }25\pi\qquad\textbf{(C) }26\pi\qquad\textbf{(D) }27\pi\qquad\textbf{(E) }28\pi$

Solution 1

Let the center of the first circle be $O.$ By Pythagorean Theorem, \[AO=\sqrt{(3\sqrt{6})^2+(5\sqrt{2})^2}=2 \sqrt{26}\] Now, notice that since $\angle ABO$ is $90$ degrees, so arc $AO$ is $180$ degrees and $AO$ is the diameter. Thus, the radius is $\sqrt{26},$ so the area is $\boxed{26\pi}.$

- kante314

Solution 2 (Similar Triangles)

[asy]  import olympiad; unitsize(50); pair A,B,C,D,E,I,O; A=origin; B=(2,3); C=(-2,3); D=(4.6,6.6); E=(-4.6,6.6); O=circumcenter(A,B,C); // olympiad - circumcenter I=incenter(A,D,E); draw(A--B--C--cycle); dot(O); dot(I); draw(circumcircle(A,B,C)); // olympiad - circumcircle draw(incircle(A,D,E)); draw(I--B); draw(I--C); draw(I--A); draw(rightanglemark(A,C,I));  draw(rightanglemark(A,B,I));  label("$O$",O,S); label("$A$",A,S); label("$B$",B,S); label("$C$",C,W); label("$3\sqrt{6}$",(1.25,1),S); label("$3\sqrt{6}$",(-1.25,1),S); label("$I$",I,N);    [/asy]

Solution in Progress

~KingRavi

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png