Difference between revisions of "2021 Fall AMC 10A Problems/Problem 19"
(→Solution 1) |
MRENTHUSIASM (talk | contribs) m |
||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | A disk of radius <math>1</math> rolls all the way around the inside of a square of side length <math>s>4</math> and sweeps out a region of area <math>A</math>. A second disk of radius <math>1</math> rolls all the way around the outside of the same square and sweeps out a region of area <math>2A</math>. The value of <math>s</math> can be written as <math>a+\frac{b\pi}{c}</math>, where <math>a,b</math>, and <math>c</math> are positive integers and <math>b</math> and <math>c</math> are relatively prime. What is <math>a+b+c</math>? | ||
+ | |||
+ | <math>\textbf{(A)} ~10\qquad\textbf{(B)} ~11\qquad\textbf{(C)} ~12\qquad\textbf{(D)} ~13\qquad\textbf{(E)} ~14</math> | ||
− | |||
==Solution 1== | ==Solution 1== | ||
The side length of the inner square traced out by the disk with radius <math>1</math> is <math>s-4</math>. However, there is a little triangle piece at each corner where the disk never sweeps out. The combined area of these <math>4</math> pieces is <math>(1+1)^2-\pi\cdot1^2=4-\pi</math>. As a result, <math>A=s^2-(s-4)^2-(4-\pi)=8s-20+\pi</math>. | The side length of the inner square traced out by the disk with radius <math>1</math> is <math>s-4</math>. However, there is a little triangle piece at each corner where the disk never sweeps out. The combined area of these <math>4</math> pieces is <math>(1+1)^2-\pi\cdot1^2=4-\pi</math>. As a result, <math>A=s^2-(s-4)^2-(4-\pi)=8s-20+\pi</math>. |
Revision as of 15:10, 28 November 2021
Contents
Problem
A disk of radius rolls all the way around the inside of a square of side length and sweeps out a region of area . A second disk of radius rolls all the way around the outside of the same square and sweeps out a region of area . The value of can be written as , where , and are positive integers and and are relatively prime. What is ?
Solution 1
The side length of the inner square traced out by the disk with radius is . However, there is a little triangle piece at each corner where the disk never sweeps out. The combined area of these pieces is . As a result, .
Now, we consider the second disk. The part it sweeps is comprised of quarter circles with radius and rectangles with a side lengths of and . When we add it all together, . so . Finally, .
~MathFun1000 (Inspired by Way Tan)
Solution 2
The area of the region covered by the first disk is
The area of the region covered by the second disk is
These two equations jointly imply .
Therefore, the answer is .
~Steven Chen (www.professorchenedu.com)
See Also
2021 Fall AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.