Difference between revisions of "2021 Fall AMC 10A Problems/Problem 24"

m (Solution 1)
(Solution 1)
Line 15: Line 15:
 
   <li><b>Opposite edges have the same label.</b></li><p>
 
   <li><b>Opposite edges have the same label.</b></li><p>
 
There are <math>2</math> ways to label the edges of <math>ABCD.</math> We will consider one of the ways, then multiply the count by <math>2:</math> Assume that <math>\overline{AB},\overline{BC},\overline{CD},\overline{DA}</math> are labeled <math>1,0,1,0,</math> respectively.<p>
 
There are <math>2</math> ways to label the edges of <math>ABCD.</math> We will consider one of the ways, then multiply the count by <math>2:</math> Assume that <math>\overline{AB},\overline{BC},\overline{CD},\overline{DA}</math> are labeled <math>1,0,1,0,</math> respectively.<p>
Clearly, at least one of <math>\overline{AE}</math> and <math>\overline{DH}</math> is labeled <math>1.</math> Without the loss of generality, suppose that <math>\overline{AE}</math> is labeled <math>1.</math> The only possibility is shown below:
+
We apply casework to the label of <math>\overline{AE},</math> as shown below.
 
<p><b>DIAGRAM WILL BE DONE TOMORROW.</b><p>
 
<p><b>DIAGRAM WILL BE DONE TOMORROW.</b><p>
By either a horizontal reflection or a vertical reflection, we get one new labeling. <p>
+
We have <math>2\cdot2=4</math> such labelings for this case.
Together, we have <math>2\cdot2=4</math> labeling for this case.
 
 
   <li><b>Opposite edges have different labels.</b></li><p>
 
   <li><b>Opposite edges have different labels.</b></li><p>
 
There are <math>4</math> ways to label the edges of <math>ABCD.</math> We will consider one of the ways, then multiply the count by <math>4:</math> Assume that <math>\overline{AB},\overline{BC},\overline{CD},\overline{DA}</math> are labeled <math>1,1,0,0,</math> respectively.<p>
 
There are <math>4</math> ways to label the edges of <math>ABCD.</math> We will consider one of the ways, then multiply the count by <math>4:</math> Assume that <math>\overline{AB},\overline{BC},\overline{CD},\overline{DA}</math> are labeled <math>1,1,0,0,</math> respectively.<p>
 +
We apply casework to the labels of <math>\overline{BF}</math> and <math>\overline{AE},</math> as shown below.
 +
<p><b>DIAGRAM WILL BE DONE TOMORROW.</b><p>
 +
We have <math>4\cdot4=16</math> such labelings for this case.
 
</ol>
 
</ol>
 +
Therefore, we have <math>4+16=\boxed{\textbf{(E) } 20}</math> such labelings in total.
 +
 +
~MRENTHUSIASM
  
 
==Solution 2==
 
==Solution 2==

Revision as of 02:44, 7 December 2021

Problem

Each of the $12$ edges of a cube is labeled $0$ or $1$. Two labelings are considered different even if one can be obtained from the other by a sequence of one or more rotations and/or reflections. For how many such labelings is the sum of the labels on the edges of each of the $6$ faces of the cube equal to $2$?

$\textbf{(A) } 8 \qquad\textbf{(B) } 10 \qquad\textbf{(C) } 12 \qquad\textbf{(D) } 16 \qquad\textbf{(E) } 20$

Solution 1

For simplicity purposes, we name this cube $ABCDEFGH$ by vertices, as shown below.

DIAGRAM WILL BE DONE TOMORROW.

Note that for each face of this cube, two edges are labeled $0$ and two edges are labeled $1.$ For all twelve edges of this cube, we conclude that six edges are labeled $0,$ and six edges are labeled $1.$

We apply casework to face $ABCD.$ Recall that there are $\binom42=6$ ways to label its edges:

  1. Opposite edges have the same label.
  2. There are $2$ ways to label the edges of $ABCD.$ We will consider one of the ways, then multiply the count by $2:$ Assume that $\overline{AB},\overline{BC},\overline{CD},\overline{DA}$ are labeled $1,0,1,0,$ respectively.

    We apply casework to the label of $\overline{AE},$ as shown below.

    DIAGRAM WILL BE DONE TOMORROW.

    We have $2\cdot2=4$ such labelings for this case.

  3. Opposite edges have different labels.
  4. There are $4$ ways to label the edges of $ABCD.$ We will consider one of the ways, then multiply the count by $4:$ Assume that $\overline{AB},\overline{BC},\overline{CD},\overline{DA}$ are labeled $1,1,0,0,$ respectively.

    We apply casework to the labels of $\overline{BF}$ and $\overline{AE},$ as shown below.

    DIAGRAM WILL BE DONE TOMORROW.

    We have $4\cdot4=16$ such labelings for this case.

Therefore, we have $4+16=\boxed{\textbf{(E) } 20}$ such labelings in total.

~MRENTHUSIASM

Solution 2

Since we want the sum of the edges of each face to be $2$, we need there to be two $1$s and two $0$s on each face. Through experimentation, we find that either $2, 4,$ or all of them have $1$s adjacent to $1$s and $0$s adjacent to $0$ on each face. WLOG, let the first face (counterclockwise) be $0,0,1,1$. In this case we are trying to have all of them be adjacent to each other. First face: $0,0,1,1$. Second face: $2$ choices: $1,0,0,1$ or $0,0,1,1$. After that, it is basically forced and everything will fall in to place. Since we assumed WLOG, we need to multiply $2$ by $4$ to get a total of $8$ different arrangements.

Secondly: $4$ of the faces have all of them adjacent and $2$ of the faces do not: WLOG counting counterclockwise, we have $0,0,1,1$. Then, we choose the other face next to it. There are two cases, which are $0,1,0,1$ and $1,0,1,0$. Therefore, this subcase has $4$ different arrangements. Then, we can choose the face at front to be $1,0,1,0$. This has $4$ cases. The sides can either be $0,1,1,0$ or $1,1,0,0$. Therefore, we have another $8$ cases.

Summing these up, we have $8+4+8 = 20$. Therefore, our answer is $\boxed {\textbf{(E) }20}$

~Arcticturn

Remark: It is very easy to get disorganized when counting, so when doing this problem, make sure to draw a diagram of the cube. Labeling is a bit harder, since we often confuse one side with another. Try doing the problem by labeling sides on the lines (literally letting the lines pass through your $0$s and $1$s.) I found that to be very helpful when solving this problem.

Solution 3

[asy] pair A, B, C, D, E, F, G, H; A = (0, 0); B = (12.071,0); C = (12.071,12.071); D = (0,12.071); E = (3.536,3.536); F = (8.536,3.536); G = (8.536,8.536); H = (3.536,8.536);  draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, NE); label("$G$", G, SE); label("$H$", H, SW); [/asy]

We see that each face has to have 2 1's and 2 0's. We can start with edges connecting to A.

Case 1

[asy] pair A, B, C, D, E, F, G, H; A = (0, 0); B = (12.071,0); C = (12.071,12.071); D = (0,12.071); E = (3.536,3.536); F = (8.536,3.536); G = (8.536,8.536); H = (3.536,8.536);  draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, NE); label("$G$", G, SE); label("$H$", H, SW);  label("$1$", A--B, S); label("$1$", A--D, W); label("$1$", A--E, NW); [/asy]

This goes to:

[asy] pair A, B, C, D, E, F, G, H; A = (0, 0); B = (12.071,0); C = (12.071,12.071); D = (0,12.071); E = (3.536,3.536); F = (8.536,3.536); G = (8.536,8.536); H = (3.536,8.536);  draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, NE); label("$G$", G, SE); label("$H$", H, SW);  label("$1$", A--B, S); label("$0$", B--C, W); // Breaks for some reason when I put it to the east label("$0$", C--D, N); label("$1$", D--A, W); label("$0$", E--F, S); label("$1$", F--G, W); // Same here label("$1$", G--H, N); label("$0$", H--E, W); label("$1$", A--E, NW); label("$0$", B--F, NE); label("$1$", C--G, SE); label("$0$", D--H, SW); [/asy]

We can see that we choose $2$ diametrically opposite vertices to put $3$ $1$'s on the connecting edges. As a result, this case has $\frac{8}{2}=4$ orientations.

Case 2

[asy] pair A, B, C, D, E, F, G, H; A = (0, 0); B = (12.071,0); C = (12.071,12.071); D = (0,12.071); E = (3.536,3.536); F = (8.536,3.536); G = (8.536,8.536); H = (3.536,8.536);  draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, NE); label("$G$", G, SE); label("$H$", H, SW);  label("$0$", A--B, S); label("$1$", A--D, W); label("$1$", A--E, NW); [/asy]

Filling out a bit more, we have:

[asy] pair A, B, C, D, E, F, G, H; A = (0, 0); B = (12.071,0); C = (12.071,12.071); D = (0,12.071); E = (3.536,3.536); F = (8.536,3.536); G = (8.536,8.536); H = (3.536,8.536);  draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, NE); label("$G$", G, SE); label("$H$", H, SW);  label("$0$", A--B, S); label("$1$", A--D, W); label("$1$", A--E, NW); label("$0$", H--E, W); label("$0$", D--H, SW); [/asy]

Let's try filling out $BC$ and $CD$ first.

Case 2.1

[asy] pair A, B, C, D, E, F, G, H; A = (0, 0); B = (12.071,0); C = (12.071,12.071); D = (0,12.071); E = (3.536,3.536); F = (8.536,3.536); G = (8.536,8.536); H = (3.536,8.536);  draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, NE); label("$G$", G, SE); label("$H$", H, SW);  label("$0$", A--B, S); label("$$", B--C, W); // Breaks for some reason when I put it to the east label("$$", C--D, N); label("$1$", D--A, W); label("$0$", E--F, S); label("$$", F--G, W); // Same here label("$$", G--H, N); label("$0$", H--E, W); label("$1$", A--E, NW); label("$1$", B--F, NE); label("$$", C--G, SE); label("$0$", D--H, SW); [/asy]

This goes to:

[asy] pair A, B, C, D, E, F, G, H; A = (0, 0); B = (12.071,0); C = (12.071,12.071); D = (0,12.071); E = (3.536,3.536); F = (8.536,3.536); G = (8.536,8.536); H = (3.536,8.536);  draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, NE); label("$G$", G, SE); label("$H$", H, SW);  label("$0$", A--B, S); label("$0$", B--C, W); // Breaks for some reason when I put it to the east label("$1$", C--D, N); label("$1$", D--A, W); label("$0$", E--F, S); label("$1$", F--G, W); // Same here label("$1$", G--H, N); label("$0$", H--E, W); label("$1$", A--E, NW); label("$1$", B--F, NE); label("$0$", C--G, SE); label("$0$", D--H, SW); [/asy]

We can see that it consists of chains of three $1$'s, with the middle of each chain being opposite edges. As a result, this case has $\frac{12}{2}=6$ orientations.

Case 2.2

[asy] pair A, B, C, D, E, F, G, H; A = (0, 0); B = (12.071,0); C = (12.071,12.071); D = (0,12.071); E = (3.536,3.536); F = (8.536,3.536); G = (8.536,8.536); H = (3.536,8.536);  draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, NE); label("$G$", G, SE); label("$H$", H, SW);  label("$0$", A--B, S); label("$$", B--C, W); // Breaks for some reason when I put it to the east label("$$", C--D, N); label("$1$", D--A, W); label("$1$", E--F, S); label("$$", F--G, W); // Same here label("$$", G--H, N); label("$0$", H--E, W); label("$1$", A--E, NW); label("$0$", B--F, NE); label("$$", C--G, SE); label("$0$", D--H, SW); [/asy]

Oh no... We have different ways of filling out $FG$ and $GH$. More casework!

Case 2.2.1

[asy] pair A, B, C, D, E, F, G, H; A = (0, 0); B = (12.071,0); C = (12.071,12.071); D = (0,12.071); E = (3.536,3.536); F = (8.536,3.536); G = (8.536,8.536); H = (3.536,8.536);  draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, NE); label("$G$", G, SE); label("$H$", H, SW);  label("$0$", A--B, S); label("$$", B--C, W); // Breaks for some reason when I put it to the east label("$$", C--D, N); label("$1$", D--A, W); label("$1$", E--F, S); label("$1$", F--G, W); // Same here label("$0$", G--H, N); label("$0$", H--E, W); label("$1$", A--E, NW); label("$0$", B--F, NE); label("$$", C--G, SE); label("$0$", D--H, SW); [/asy]

This goes to:

[asy] pair A, B, C, D, E, F, G, H; A = (0, 0); B = (12.071,0); C = (12.071,12.071); D = (0,12.071); E = (3.536,3.536); F = (8.536,3.536); G = (8.536,8.536); H = (3.536,8.536);  draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, NE); label("$G$", G, SE); label("$H$", H, SW);  label("$0$", A--B, S); label("$0$", B--C, W); // Breaks for some reason when I put it to the east label("$1$", C--D, N); label("$1$", D--A, W); label("$1$", E--F, S); label("$1$", F--G, W); // Same here label("$0$", G--H, N); label("$0$", H--E, W); label("$1$", A--E, NW); label("$0$", B--F, NE); label("$1$", C--G, SE); label("$0$", D--H, SW); [/asy]

We can see that this is the inverse of case 1 (Define inverse to mean swapping $1$'s for $0$'s and $0$'s for $1$'s). Therefore, this should also have $4$ orientations.

Case 2.2.2

[asy] pair A, B, C, D, E, F, G, H; A = (0, 0); B = (12.071,0); C = (12.071,12.071); D = (0,12.071); E = (3.536,3.536); F = (8.536,3.536); G = (8.536,8.536); H = (3.536,8.536);  draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, NE); label("$G$", G, SE); label("$H$", H, SW);  label("$0$", A--B, S); label("$$", B--C, W); // Breaks for some reason when I put it to the east label("$$", C--D, N); label("$1$", D--A, W); label("$1$", E--F, S); label("$0$", F--G, W); // Same here label("$1$", G--H, N); label("$0$", H--E, W); label("$1$", A--E, NW); label("$0$", B--F, NE); label("$$", C--G, SE); label("$0$", D--H, SW); [/asy]

This goes to:

[asy] pair A, B, C, D, E, F, G, H; A = (0, 0); B = (12.071,0); C = (12.071,12.071); D = (0,12.071); E = (3.536,3.536); F = (8.536,3.536); G = (8.536,8.536); H = (3.536,8.536);  draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, NE); label("$G$", G, SE); label("$H$", H, SW);  label("$0$", A--B, S); label("$1$", B--C, W); // Breaks for some reason when I put it to the east label("$0$", C--D, N); label("$1$", D--A, W); label("$1$", E--F, S); label("$0$", F--G, W); // Same here label("$1$", G--H, N); label("$0$", H--E, W); label("$1$", A--E, NW); label("$0$", B--F, NE); label("$1$", C--G, SE); label("$0$", D--H, SW); [/asy]

This is the inverse of case 2.1, so this will also have $6$ orientations.

Putting it all together

We see that if the $3$ edges connecting to $A$ has two $0$'s, and one $1$, it would have the same solutions as if it had two $1$'s, and one $0$. The solutions would just be inverted. As case 2.1 and case 2.2.2 are inverses, and case 2.2.1 has case 1 as an inverse, there would not be any additional solutions.

Similarly, if the $3$ edges connecting to $A$ has three $0$'s, it would be the same as the inverse of case 1, or case 2.2.1, resulting in no new solutions.

Putting all the cases together, we have $4+6+4+6=\boxed {\textbf{(E) }20}$ solutions.

~ConcaveTriangle

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png