Difference between revisions of "2022 AMC 8 Problems"
(→Problem 14) |
(→Problem 1) |
||
Line 33: | Line 33: | ||
<math>\textbf{(A) } 10 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15</math> | <math>\textbf{(A) } 10 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15</math> | ||
− | |||
[[2022 AMC 8 Problems/Problem 1|Solution]] | [[2022 AMC 8 Problems/Problem 1|Solution]] |
Revision as of 09:25, 28 January 2022
IMPORTANT: THESE ARE NOT THE 2022 AMC 8 PROBLEMS. THIS IS COPY PASTED FROM THE 2020 AMC 8 PROBLEMS WIKI PAGE.
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
Problem 1
The Math Team designed a logo shaped like a multiplication symbol, shown below on a grid of 1-inch squares. What is the area of the logo in square inches?
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
In how many ways can the letters in BEEKEEPER be rearranged so that two or more Es do not appear together?
Problem 15
Problem 16
Problem 17
How many factors of have more than factors? (As an example, has factors, namely and )
Problem 18
Rectangle is inscribed in a semicircle with diameter as shown in the figure. Let and let What is the area of
Problem 19
A number is called flippy if its digits alternate between two distinct digits. For example, and are flippy, but and are not. How many five-digit flippy numbers are divisible by
Problem 20
A scientist walking through a forest recorded as integers the heights of trees standing in a row. She observed that each tree was either twice as tall or half as tall as the one to its right. Unfortunately some of her data was lost when rain fell on her notebook. Her notes are shown below, with blanks indicating the missing numbers. Based on her observations, the scientist was able to reconstruct the lost data. What was the average height of the trees, in meters?
Problem 21
A game board consists of squares that alternate in color between black and white. The figure below shows square in the bottom row and square in the top row. A marker is placed at A step consists of moving the marker onto one of the adjoining white squares in the row above. How many -step paths are there from to (The figure shows a sample path.)
Problem 22
When a positive integer is fed into a machine, the output is a number calculated according to the rule shown below.
For example, starting with an input of the machine will output Then if the output is repeatedly inserted into the machine five more times, the final output is When the same -step process is applied to a different starting value of the final output is What is the sum of all such integers
Problem 23
Five different awards are to be given to three students. Each student will receive at least one award. In how many different ways can the awards be distributed?
Problem 24
A large square region is paved with gray square tiles, each measuring inches on a side. A border inches wide surrounds each tile. The figure below shows the case for . When , the gray tiles cover of the area of the large square region. What is the ratio for this larger value of
Problem 25
Rectangles and and squares and shown below, combine to form a rectangle that is 3322 units wide and 2020 units high. What is the side length of in units?