Difference between revisions of "2020 AMC 8 Problems/Problem 23"
MRENTHUSIASM (talk | contribs) (Undo revision 170411 by Mahaler (talk) The new Sol 1 is totally irrelevant. Restored the previous version.) (Tag: Undo) |
MRENTHUSIASM (talk | contribs) m (→Solution 2 (Counting)) |
||
Line 7: | Line 7: | ||
Without the restriction that each student receives at least one award, we could simply take each of the <math>5</math> awards and choose one of the <math>3</math> students to give it to, so that there would be <math>3^5=243</math> ways to distribute the awards. We now need to subtract the cases where at least one student doesn't receive an award. If a student doesn't receive an award, there are <math>3</math> choices for which student that is, then <math>2^5 = 32</math> ways of choosing a student to receive each of the awards, for a total of <math>3 \cdot 32 = 96</math>. However, if <math>2</math> students both don't receive an award, then such a case would be counted twice among our <math>96</math>, so we need to add back in these cases. Of course, <math>2</math> students both not receiving an award is equivalent to only <math>1</math> student receiving all <math>5</math> awards, so there are simply <math>3</math> choices for which student that would be. It follows that the total number of ways of distributing the awards is <math>243-96+3=\boxed{\textbf{(B) }150}</math>. | Without the restriction that each student receives at least one award, we could simply take each of the <math>5</math> awards and choose one of the <math>3</math> students to give it to, so that there would be <math>3^5=243</math> ways to distribute the awards. We now need to subtract the cases where at least one student doesn't receive an award. If a student doesn't receive an award, there are <math>3</math> choices for which student that is, then <math>2^5 = 32</math> ways of choosing a student to receive each of the awards, for a total of <math>3 \cdot 32 = 96</math>. However, if <math>2</math> students both don't receive an award, then such a case would be counted twice among our <math>96</math>, so we need to add back in these cases. Of course, <math>2</math> students both not receiving an award is equivalent to only <math>1</math> student receiving all <math>5</math> awards, so there are simply <math>3</math> choices for which student that would be. It follows that the total number of ways of distributing the awards is <math>243-96+3=\boxed{\textbf{(B) }150}</math>. | ||
− | ==Solution 2 (Counting)== | + | ==Solution 2 (Constructive Counting)== |
Firstly, observe that it is not possible for a single student to receive <math>4</math> or <math>5</math> awards because this would mean that one of the other students receives no awards. Thus, each student must receive either <math>1</math>, <math>2</math>, or <math>3</math> awards. If a student receives <math>3</math> awards, then the other two students must each receive <math>1</math> award; if a student receives <math>2</math> awards, then another student must also receive <math>2</math> awards and the remaining student must receive <math>1</math> award. We consider each of these two cases in turn. If a student receives three awards, there are <math>3</math> ways to choose which student this is, and <math>\binom{5}{3}</math> ways to give that student <math>3</math> out of the <math>5</math> awards. Next, there are <math>2</math> students left and <math>2</math> awards to give out, with each student getting one award. There are clearly just <math>2</math> ways to distribute these two awards out, giving <math>3\cdot\binom{5}{3}\cdot 2=60</math> ways to distribute the awards in this case. | Firstly, observe that it is not possible for a single student to receive <math>4</math> or <math>5</math> awards because this would mean that one of the other students receives no awards. Thus, each student must receive either <math>1</math>, <math>2</math>, or <math>3</math> awards. If a student receives <math>3</math> awards, then the other two students must each receive <math>1</math> award; if a student receives <math>2</math> awards, then another student must also receive <math>2</math> awards and the remaining student must receive <math>1</math> award. We consider each of these two cases in turn. If a student receives three awards, there are <math>3</math> ways to choose which student this is, and <math>\binom{5}{3}</math> ways to give that student <math>3</math> out of the <math>5</math> awards. Next, there are <math>2</math> students left and <math>2</math> awards to give out, with each student getting one award. There are clearly just <math>2</math> ways to distribute these two awards out, giving <math>3\cdot\binom{5}{3}\cdot 2=60</math> ways to distribute the awards in this case. | ||
− | In the other case, two student receives <math>2</math> awards and one student recieves <math>1</math> award . We know there are 3 choices for which student gets 1 award. There are <math>\binom{3}{1}</math> ways to do this. Then, there are <math>\binom{5}{2}</math> ways to give the first student his two awards, leaving <math>3</math> awards yet to distribute. There are then <math>\binom{3}{2}</math> ways to give the second student his <math>2</math> awards. Finally, there is only <math>1</math> student and <math>1</math> award left, so there is only <math>1</math> way to distribute this award. This results in <math>\binom{5}{2}\cdot\binom{3}{2}\cdot 1\cdot 3 =90</math> ways to distribute the awards in this case. Adding the results of these two cases, we get <math>60+90=\boxed{\textbf{(B) }150}</math>. | + | In the other case, two student receives <math>2</math> awards and one student recieves <math>1</math> award . We know there are <math>3</math> choices for which student gets <math>1</math> award. There are <math>\binom{3}{1}</math> ways to do this. Then, there are <math>\binom{5}{2}</math> ways to give the first student his two awards, leaving <math>3</math> awards yet to distribute. There are then <math>\binom{3}{2}</math> ways to give the second student his <math>2</math> awards. Finally, there is only <math>1</math> student and <math>1</math> award left, so there is only <math>1</math> way to distribute this award. This results in <math>\binom{5}{2}\cdot\binom{3}{2}\cdot 1\cdot 3 =90</math> ways to distribute the awards in this case. Adding the results of these two cases, we get <math>60+90=\boxed{\textbf{(B) }150}</math>. |
==Video Solution by WhyMath== | ==Video Solution by WhyMath== |
Revision as of 09:43, 28 January 2022
Contents
Problem
Five different awards are to be given to three students. Each student will receive at least one award. In how many different ways can the awards be distributed?
Solution 1 (Complementary Counting)
Without the restriction that each student receives at least one award, we could simply take each of the awards and choose one of the students to give it to, so that there would be ways to distribute the awards. We now need to subtract the cases where at least one student doesn't receive an award. If a student doesn't receive an award, there are choices for which student that is, then ways of choosing a student to receive each of the awards, for a total of . However, if students both don't receive an award, then such a case would be counted twice among our , so we need to add back in these cases. Of course, students both not receiving an award is equivalent to only student receiving all awards, so there are simply choices for which student that would be. It follows that the total number of ways of distributing the awards is .
Solution 2 (Constructive Counting)
Firstly, observe that it is not possible for a single student to receive or awards because this would mean that one of the other students receives no awards. Thus, each student must receive either , , or awards. If a student receives awards, then the other two students must each receive award; if a student receives awards, then another student must also receive awards and the remaining student must receive award. We consider each of these two cases in turn. If a student receives three awards, there are ways to choose which student this is, and ways to give that student out of the awards. Next, there are students left and awards to give out, with each student getting one award. There are clearly just ways to distribute these two awards out, giving ways to distribute the awards in this case.
In the other case, two student receives awards and one student recieves award . We know there are choices for which student gets award. There are ways to do this. Then, there are ways to give the first student his two awards, leaving awards yet to distribute. There are then ways to give the second student his awards. Finally, there is only student and award left, so there is only way to distribute this award. This results in ways to distribute the awards in this case. Adding the results of these two cases, we get .
Video Solution by WhyMath
~WhyMath
Video Solutions
https://youtu.be/tDChKU0pVN4
https://youtu.be/RUg6QfV5yg4
Video Solution by Interstigation
https://youtu.be/YnwkBZTv5Fw?t=1443
~Interstigation
See also
2020 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.